Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385620912> ?p ?o ?g. }
- W4385620912 abstract "Human tissue and its constituent cells form a microenvironment that is fundamentally three-dimensional (3D). However, the standard-of-care in pathologic diagnosis involves selecting a few two-dimensional (2D) sections for microscopic evaluation, risking sampling bias and misdiagnosis. Diverse methods for capturing 3D tissue morphologies have been developed, but they have yet had little translation to clinical practice; manual and computational evaluations of such large 3D data have so far been impractical and/or unable to provide patient-level clinical insights. Here we present Modality-Agnostic Multiple instance learning for volumetric Block Analysis (MAMBA), a deep-learning-based platform for processing 3D tissue images from diverse imaging modalities and predicting patient outcomes. Archived prostate cancer specimens were imaged with open-top light-sheet microscopy or microcomputed tomography and the resulting 3D datasets were used to train risk-stratification networks based on 5-year biochemical recurrence outcomes via MAMBA. With the 3D block-based approach, MAMBA achieves an area under the receiver operating characteristic curve (AUC) of 0.86 and 0.74, superior to 2D traditional single-slice-based prognostication (AUC of 0.79 and 0.57), suggesting superior prognostication with 3D morphological features. Further analyses reveal that the incorporation of greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, suggesting the value of capturing larger extents of heterogeneous 3D morphology. With the rapid growth and adoption of 3D spatial biology and pathology techniques by researchers and clinicians, MAMBA provides a general and efficient framework for 3D weakly supervised learning for clinical decision support and can help to reveal novel 3D morphological biomarkers for prognosis and therapeutic response." @default.
- W4385620912 created "2023-08-08" @default.
- W4385620912 creator A5008894099 @default.
- W4385620912 creator A5014254460 @default.
- W4385620912 creator A5036954160 @default.
- W4385620912 creator A5046956648 @default.
- W4385620912 creator A5050925115 @default.
- W4385620912 creator A5052291594 @default.
- W4385620912 creator A5061166419 @default.
- W4385620912 creator A5067494510 @default.
- W4385620912 creator A5078448683 @default.
- W4385620912 creator A5079652585 @default.
- W4385620912 creator A5080050834 @default.
- W4385620912 date "2023-07-27" @default.
- W4385620912 modified "2023-09-27" @default.
- W4385620912 title "Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples." @default.
- W4385620912 cites W1967303488 @default.
- W4385620912 cites W1983602950 @default.
- W4385620912 cites W2030224529 @default.
- W4385620912 cites W2069529252 @default.
- W4385620912 cites W2070008638 @default.
- W4385620912 cites W2072392962 @default.
- W4385620912 cites W2074280835 @default.
- W4385620912 cites W2103354988 @default.
- W4385620912 cites W2121075186 @default.
- W4385620912 cites W2136916987 @default.
- W4385620912 cites W2171439501 @default.
- W4385620912 cites W2301358467 @default.
- W4385620912 cites W2407448655 @default.
- W4385620912 cites W2700381762 @default.
- W4385620912 cites W2727380696 @default.
- W4385620912 cites W2760605310 @default.
- W4385620912 cites W2919115771 @default.
- W4385620912 cites W2944987242 @default.
- W4385620912 cites W2953583330 @default.
- W4385620912 cites W2956228567 @default.
- W4385620912 cites W2998175747 @default.
- W4385620912 cites W2999091210 @default.
- W4385620912 cites W3013692475 @default.
- W4385620912 cites W3018185338 @default.
- W4385620912 cites W3090189072 @default.
- W4385620912 cites W3101452040 @default.
- W4385620912 cites W3111521801 @default.
- W4385620912 cites W3118741877 @default.
- W4385620912 cites W3120894151 @default.
- W4385620912 cites W3130036784 @default.
- W4385620912 cites W3135547872 @default.
- W4385620912 cites W3159302505 @default.
- W4385620912 cites W3160261825 @default.
- W4385620912 cites W3212934474 @default.
- W4385620912 cites W3216310288 @default.
- W4385620912 cites W4207066074 @default.
- W4385620912 cites W4220802999 @default.
- W4385620912 cites W4220913108 @default.
- W4385620912 cites W4280562732 @default.
- W4385620912 cites W4292325804 @default.
- W4385620912 cites W4307286999 @default.
- W4385620912 cites W4313830579 @default.
- W4385620912 cites W4317434093 @default.
- W4385620912 cites W4317897848 @default.
- W4385620912 cites W4319777935 @default.
- W4385620912 cites W4362608384 @default.
- W4385620912 cites W4378349017 @default.
- W4385620912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37547660" @default.
- W4385620912 hasPublicationYear "2023" @default.
- W4385620912 type Work @default.
- W4385620912 citedByCount "0" @default.
- W4385620912 crossrefType "posted-content" @default.
- W4385620912 hasAuthorship W4385620912A5008894099 @default.
- W4385620912 hasAuthorship W4385620912A5014254460 @default.
- W4385620912 hasAuthorship W4385620912A5036954160 @default.
- W4385620912 hasAuthorship W4385620912A5046956648 @default.
- W4385620912 hasAuthorship W4385620912A5050925115 @default.
- W4385620912 hasAuthorship W4385620912A5052291594 @default.
- W4385620912 hasAuthorship W4385620912A5061166419 @default.
- W4385620912 hasAuthorship W4385620912A5067494510 @default.
- W4385620912 hasAuthorship W4385620912A5078448683 @default.
- W4385620912 hasAuthorship W4385620912A5079652585 @default.
- W4385620912 hasAuthorship W4385620912A5080050834 @default.
- W4385620912 hasConcept C108583219 @default.
- W4385620912 hasConcept C119857082 @default.
- W4385620912 hasConcept C126838900 @default.
- W4385620912 hasConcept C142724271 @default.
- W4385620912 hasConcept C153180895 @default.
- W4385620912 hasConcept C154945302 @default.
- W4385620912 hasConcept C2524010 @default.
- W4385620912 hasConcept C2777210771 @default.
- W4385620912 hasConcept C2777522853 @default.
- W4385620912 hasConcept C2779974597 @default.
- W4385620912 hasConcept C3019007443 @default.
- W4385620912 hasConcept C33923547 @default.
- W4385620912 hasConcept C41008148 @default.
- W4385620912 hasConcept C512399662 @default.
- W4385620912 hasConcept C544519230 @default.
- W4385620912 hasConcept C58471807 @default.
- W4385620912 hasConcept C71924100 @default.
- W4385620912 hasConceptScore W4385620912C108583219 @default.
- W4385620912 hasConceptScore W4385620912C119857082 @default.
- W4385620912 hasConceptScore W4385620912C126838900 @default.
- W4385620912 hasConceptScore W4385620912C142724271 @default.