Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385625551> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4385625551 abstract "The significant health impact of lung diseases hampers the life of an individual and his/her family. It is crucial to ensure that everyone lives a healthy life, hence early detection of lung diseases is encouraged at an early stage. As several lung illnesses reduce the life span of people, they are not able to live a healthy life. There are errors in many detection algorithms, so a better algorithm is required to detect such diseases. In this paper, we have discussed lung diseases and how to recognize them. The two primary techniques for identifying lung illness are therefore image processing and deep learning. Deep learning is increasingly emphasized as the preferable method with convolutional neural networks. We further discussed various machine learning algorithms and compared their results with the newly designed algorithm of a convolutional neural network with an autoencoder. There are several approaches described in the literature for classifying medical images. This paper aims to develop a useful tool that will assist medical practitioners in quickly determining if a patient has a lung disease or is at risk of contracting one; by analyzing lung images and examining disease development risk factors with the use of an autoencoder." @default.
- W4385625551 created "2023-08-08" @default.
- W4385625551 creator A5019072702 @default.
- W4385625551 creator A5026192037 @default.
- W4385625551 creator A5087877858 @default.
- W4385625551 date "2023-06-23" @default.
- W4385625551 modified "2023-09-23" @default.
- W4385625551 title "Classification of Lung Diseases using Deep Learning Techniques: A Comparative Study of Classification Algorithms" @default.
- W4385625551 cites W2060835564 @default.
- W4385625551 cites W2333693123 @default.
- W4385625551 cites W2417429787 @default.
- W4385625551 cites W2518911984 @default.
- W4385625551 cites W2608231518 @default.
- W4385625551 cites W2745075853 @default.
- W4385625551 cites W2889164281 @default.
- W4385625551 cites W2908763778 @default.
- W4385625551 cites W2921249351 @default.
- W4385625551 cites W2943642020 @default.
- W4385625551 cites W3003475284 @default.
- W4385625551 cites W3010628628 @default.
- W4385625551 cites W3038056079 @default.
- W4385625551 cites W3104809143 @default.
- W4385625551 cites W3119497287 @default.
- W4385625551 cites W3138985726 @default.
- W4385625551 cites W3185607779 @default.
- W4385625551 cites W3214583359 @default.
- W4385625551 cites W4211241362 @default.
- W4385625551 cites W4226401296 @default.
- W4385625551 cites W4281648329 @default.
- W4385625551 cites W4293515133 @default.
- W4385625551 cites W4316012703 @default.
- W4385625551 cites W4323846845 @default.
- W4385625551 cites W3168811482 @default.
- W4385625551 doi "https://doi.org/10.1109/conit59222.2023.10205940" @default.
- W4385625551 hasPublicationYear "2023" @default.
- W4385625551 type Work @default.
- W4385625551 citedByCount "0" @default.
- W4385625551 crossrefType "proceedings-article" @default.
- W4385625551 hasAuthorship W4385625551A5019072702 @default.
- W4385625551 hasAuthorship W4385625551A5026192037 @default.
- W4385625551 hasAuthorship W4385625551A5087877858 @default.
- W4385625551 hasConcept C101738243 @default.
- W4385625551 hasConcept C108583219 @default.
- W4385625551 hasConcept C110083411 @default.
- W4385625551 hasConcept C11413529 @default.
- W4385625551 hasConcept C119857082 @default.
- W4385625551 hasConcept C126322002 @default.
- W4385625551 hasConcept C154945302 @default.
- W4385625551 hasConcept C2777714996 @default.
- W4385625551 hasConcept C41008148 @default.
- W4385625551 hasConcept C50644808 @default.
- W4385625551 hasConcept C71924100 @default.
- W4385625551 hasConcept C81363708 @default.
- W4385625551 hasConceptScore W4385625551C101738243 @default.
- W4385625551 hasConceptScore W4385625551C108583219 @default.
- W4385625551 hasConceptScore W4385625551C110083411 @default.
- W4385625551 hasConceptScore W4385625551C11413529 @default.
- W4385625551 hasConceptScore W4385625551C119857082 @default.
- W4385625551 hasConceptScore W4385625551C126322002 @default.
- W4385625551 hasConceptScore W4385625551C154945302 @default.
- W4385625551 hasConceptScore W4385625551C2777714996 @default.
- W4385625551 hasConceptScore W4385625551C41008148 @default.
- W4385625551 hasConceptScore W4385625551C50644808 @default.
- W4385625551 hasConceptScore W4385625551C71924100 @default.
- W4385625551 hasConceptScore W4385625551C81363708 @default.
- W4385625551 hasLocation W43856255511 @default.
- W4385625551 hasOpenAccess W4385625551 @default.
- W4385625551 hasPrimaryLocation W43856255511 @default.
- W4385625551 hasRelatedWork W2669956259 @default.
- W4385625551 hasRelatedWork W2731899572 @default.
- W4385625551 hasRelatedWork W2939353110 @default.
- W4385625551 hasRelatedWork W2999805992 @default.
- W4385625551 hasRelatedWork W3116150086 @default.
- W4385625551 hasRelatedWork W3133861977 @default.
- W4385625551 hasRelatedWork W4200173597 @default.
- W4385625551 hasRelatedWork W4312417841 @default.
- W4385625551 hasRelatedWork W4321369474 @default.
- W4385625551 hasRelatedWork W4380075502 @default.
- W4385625551 isParatext "false" @default.
- W4385625551 isRetracted "false" @default.
- W4385625551 workType "article" @default.