Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385626865> ?p ?o ?g. }
- W4385626865 endingPage "84984" @default.
- W4385626865 startingPage "84974" @default.
- W4385626865 abstract "Attention deficit hyperactivity disorder (ADHD) for children is one of the behavioral disorders that affect the brain’s ability to control attention, impulsivity, and hyperactivity and its prevalence has increased over time. The cure for ADHD is still unknown and only early detection can improve the quality of life for children with ADHD. At the same time, children with ADHD often suffer from various comorbidities like autism spectrum disorder (ASD), major depressive disorder (MDD), etc. Various researchers developed computational tools to detect children with ADHD depending on handwriting text. Handwriting text-based systems are depending on a specific language that causes problems for non-native speakers of that language. Moreover, very few researchers considered other comorbidities such as ASD, MDD, etc., in their studies to detect ADHD for children. In this study, handwriting patterns or drawing is assumed as an aspect to identify/detect ADHD children who have ASD using machine learning (ML)-based approaches. We collected handwriting samples from 29 Japanese children (14 ADHD with coexisting ASD children and 15 healthy children) using a pen tablet. We asked each child to draw two patterns, namely zigzag lines and periodic lines (PL) on a pen tablet and repeated them three times. We extracted 30 statistical features from raw datasets and these features were analyzed using sequential forward floating search (SFFS) and selected the best combinations or subsets of features. Finally, these selected features were fed into seven ML-based algorithms for detecting ADHD with coexisting ASD children. These classifiers were trained with leave-one-out cross-validation and evaluated their performances using accuracy, recall, precision, f1-score, and area under the curve (AUC). The experimental results illustrated that the highest performance scores (accuracy: 93.10%; recall: 90.48%; precision: 95.00%; f1-score: 92.68%; and AUC: 0.930) were achieved by the RF-based classifier for the PL predict task. This study will be helpful and provide evidence of the possibility of classifying ADHD children having ASD and healthy children based on their handwriting patterns." @default.
- W4385626865 created "2023-08-08" @default.
- W4385626865 creator A5000230744 @default.
- W4385626865 creator A5005221038 @default.
- W4385626865 creator A5017427960 @default.
- W4385626865 creator A5044106260 @default.
- W4385626865 creator A5050446448 @default.
- W4385626865 creator A5062642808 @default.
- W4385626865 date "2023-01-01" @default.
- W4385626865 modified "2023-10-17" @default.
- W4385626865 title "Handwriting-Based ADHD Detection for Children Having ASD Using Machine Learning Approaches" @default.
- W4385626865 cites W1516628605 @default.
- W4385626865 cites W1964866242 @default.
- W4385626865 cites W1971067072 @default.
- W4385626865 cites W2002584011 @default.
- W4385626865 cites W2012344497 @default.
- W4385626865 cites W2013926072 @default.
- W4385626865 cites W2014915963 @default.
- W4385626865 cites W2056132907 @default.
- W4385626865 cites W2060885546 @default.
- W4385626865 cites W2097037747 @default.
- W4385626865 cites W2108318847 @default.
- W4385626865 cites W2110811553 @default.
- W4385626865 cites W2122111042 @default.
- W4385626865 cites W2143445712 @default.
- W4385626865 cites W2170743500 @default.
- W4385626865 cites W2614422271 @default.
- W4385626865 cites W2614556125 @default.
- W4385626865 cites W2738690741 @default.
- W4385626865 cites W2770084542 @default.
- W4385626865 cites W2789958560 @default.
- W4385626865 cites W2923774928 @default.
- W4385626865 cites W2940320170 @default.
- W4385626865 cites W2941056772 @default.
- W4385626865 cites W2972944145 @default.
- W4385626865 cites W2994910382 @default.
- W4385626865 cites W2999169175 @default.
- W4385626865 cites W3022509920 @default.
- W4385626865 cites W3115812348 @default.
- W4385626865 cites W3199580132 @default.
- W4385626865 cites W3202497562 @default.
- W4385626865 cites W4220940693 @default.
- W4385626865 cites W4220988686 @default.
- W4385626865 cites W4225983651 @default.
- W4385626865 cites W4281393748 @default.
- W4385626865 cites W4286340209 @default.
- W4385626865 cites W4362514394 @default.
- W4385626865 doi "https://doi.org/10.1109/access.2023.3302903" @default.
- W4385626865 hasPublicationYear "2023" @default.
- W4385626865 type Work @default.
- W4385626865 citedByCount "0" @default.
- W4385626865 crossrefType "journal-article" @default.
- W4385626865 hasAuthorship W4385626865A5000230744 @default.
- W4385626865 hasAuthorship W4385626865A5005221038 @default.
- W4385626865 hasAuthorship W4385626865A5017427960 @default.
- W4385626865 hasAuthorship W4385626865A5044106260 @default.
- W4385626865 hasAuthorship W4385626865A5050446448 @default.
- W4385626865 hasAuthorship W4385626865A5062642808 @default.
- W4385626865 hasBestOaLocation W43856268651 @default.
- W4385626865 hasConcept C119857082 @default.
- W4385626865 hasConcept C138496976 @default.
- W4385626865 hasConcept C154945302 @default.
- W4385626865 hasConcept C15744967 @default.
- W4385626865 hasConcept C205778803 @default.
- W4385626865 hasConcept C2776035688 @default.
- W4385626865 hasConcept C2778538070 @default.
- W4385626865 hasConcept C2779386606 @default.
- W4385626865 hasConcept C2780319597 @default.
- W4385626865 hasConcept C2780783007 @default.
- W4385626865 hasConcept C41008148 @default.
- W4385626865 hasConcept C46312422 @default.
- W4385626865 hasConcept C70410870 @default.
- W4385626865 hasConceptScore W4385626865C119857082 @default.
- W4385626865 hasConceptScore W4385626865C138496976 @default.
- W4385626865 hasConceptScore W4385626865C154945302 @default.
- W4385626865 hasConceptScore W4385626865C15744967 @default.
- W4385626865 hasConceptScore W4385626865C205778803 @default.
- W4385626865 hasConceptScore W4385626865C2776035688 @default.
- W4385626865 hasConceptScore W4385626865C2778538070 @default.
- W4385626865 hasConceptScore W4385626865C2779386606 @default.
- W4385626865 hasConceptScore W4385626865C2780319597 @default.
- W4385626865 hasConceptScore W4385626865C2780783007 @default.
- W4385626865 hasConceptScore W4385626865C41008148 @default.
- W4385626865 hasConceptScore W4385626865C46312422 @default.
- W4385626865 hasConceptScore W4385626865C70410870 @default.
- W4385626865 hasFunder F4320323502 @default.
- W4385626865 hasLocation W43856268651 @default.
- W4385626865 hasOpenAccess W4385626865 @default.
- W4385626865 hasPrimaryLocation W43856268651 @default.
- W4385626865 hasRelatedWork W1694630026 @default.
- W4385626865 hasRelatedWork W2360066868 @default.
- W4385626865 hasRelatedWork W2381764175 @default.
- W4385626865 hasRelatedWork W2388180914 @default.
- W4385626865 hasRelatedWork W2507888814 @default.
- W4385626865 hasRelatedWork W2561540377 @default.
- W4385626865 hasRelatedWork W2593679413 @default.
- W4385626865 hasRelatedWork W2903186825 @default.
- W4385626865 hasRelatedWork W2999654664 @default.