Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385626995> ?p ?o ?g. }
- W4385626995 endingPage "83170" @default.
- W4385626995 startingPage "83150" @default.
- W4385626995 abstract "The rapid growth of the Internet of Things (IoT) has resulted in the development of intelligent industrial systems known as Industrial IoT (IIoT). These systems integrate smart devices, sensors, cameras, and 5G technologies to enable automated data gathering and analysis boost production efficiency and overcome scalability issues. However, IoT devices have limited computer power, memory, and battery capacities. To address these challenges, mobile edge computing (MEC) has been introduced to IIoT systems to reduce the computational burden on the devices. While the dedicated MEC paradigm limits optimal resource utilization and load balancing, the MEC federation can potentially overcome these drawbacks. However, previous studies have relied on idealized assumptions when developing optimal models, raising concerns about their practical applicability. In this study, we investigated the joint decision offloading and resource allocation problem for MEC federation in the IIoT. Specifically, an optimization model was constructed based on all real-world factors influencing system performance. To minimize the total energy delay cost, the original problem was transformed into a Markov decision process. Considering task generation dynamics and continuity, we addressed the Markov decision process using a deep reinforcement learning method. We propose a deep deterministic policy gradient algorithm with prioritized experience replay (DDPG-PER)-based resource allocation that can handle high-dimensional continuity of action and state spaces. The simulation results indicate that the proposed approach effectively minimizes the energy-delay costs associated with tasks." @default.
- W4385626995 created "2023-08-08" @default.
- W4385626995 creator A5026087769 @default.
- W4385626995 creator A5029734601 @default.
- W4385626995 creator A5089437153 @default.
- W4385626995 date "2023-01-01" @default.
- W4385626995 modified "2023-09-23" @default.
- W4385626995 title "Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Industrial IoT in MEC Federation System" @default.
- W4385626995 cites W2057585259 @default.
- W4385626995 cites W2069945978 @default.
- W4385626995 cites W2775482448 @default.
- W4385626995 cites W2791432311 @default.
- W4385626995 cites W2797405679 @default.
- W4385626995 cites W2892952080 @default.
- W4385626995 cites W3003577920 @default.
- W4385626995 cites W3005624551 @default.
- W4385626995 cites W3036160090 @default.
- W4385626995 cites W3041030307 @default.
- W4385626995 cites W3092311181 @default.
- W4385626995 cites W3093521697 @default.
- W4385626995 cites W3094904458 @default.
- W4385626995 cites W3096727011 @default.
- W4385626995 cites W3135028423 @default.
- W4385626995 cites W3138743904 @default.
- W4385626995 cites W3154844827 @default.
- W4385626995 cites W3195258212 @default.
- W4385626995 cites W3208354645 @default.
- W4385626995 cites W3209940515 @default.
- W4385626995 cites W3213348092 @default.
- W4385626995 cites W3215415117 @default.
- W4385626995 cites W4205762045 @default.
- W4385626995 cites W4210653835 @default.
- W4385626995 cites W4221166575 @default.
- W4385626995 cites W4226119898 @default.
- W4385626995 cites W4226464652 @default.
- W4385626995 cites W4226490845 @default.
- W4385626995 cites W4229083981 @default.
- W4385626995 cites W4235462833 @default.
- W4385626995 cites W4285113299 @default.
- W4385626995 cites W4285192912 @default.
- W4385626995 cites W4292973831 @default.
- W4385626995 cites W4323897035 @default.
- W4385626995 cites W4324292117 @default.
- W4385626995 doi "https://doi.org/10.1109/access.2023.3302518" @default.
- W4385626995 hasPublicationYear "2023" @default.
- W4385626995 type Work @default.
- W4385626995 citedByCount "0" @default.
- W4385626995 crossrefType "journal-article" @default.
- W4385626995 hasAuthorship W4385626995A5026087769 @default.
- W4385626995 hasAuthorship W4385626995A5029734601 @default.
- W4385626995 hasAuthorship W4385626995A5089437153 @default.
- W4385626995 hasBestOaLocation W43856269951 @default.
- W4385626995 hasConcept C105795698 @default.
- W4385626995 hasConcept C106189395 @default.
- W4385626995 hasConcept C120314980 @default.
- W4385626995 hasConcept C154945302 @default.
- W4385626995 hasConcept C159886148 @default.
- W4385626995 hasConcept C162307627 @default.
- W4385626995 hasConcept C162324750 @default.
- W4385626995 hasConcept C187736073 @default.
- W4385626995 hasConcept C2776061582 @default.
- W4385626995 hasConcept C2778456923 @default.
- W4385626995 hasConcept C2780451532 @default.
- W4385626995 hasConcept C29202148 @default.
- W4385626995 hasConcept C31258907 @default.
- W4385626995 hasConcept C33923547 @default.
- W4385626995 hasConcept C41008148 @default.
- W4385626995 hasConcept C48044578 @default.
- W4385626995 hasConcept C77088390 @default.
- W4385626995 hasConcept C97541855 @default.
- W4385626995 hasConceptScore W4385626995C105795698 @default.
- W4385626995 hasConceptScore W4385626995C106189395 @default.
- W4385626995 hasConceptScore W4385626995C120314980 @default.
- W4385626995 hasConceptScore W4385626995C154945302 @default.
- W4385626995 hasConceptScore W4385626995C159886148 @default.
- W4385626995 hasConceptScore W4385626995C162307627 @default.
- W4385626995 hasConceptScore W4385626995C162324750 @default.
- W4385626995 hasConceptScore W4385626995C187736073 @default.
- W4385626995 hasConceptScore W4385626995C2776061582 @default.
- W4385626995 hasConceptScore W4385626995C2778456923 @default.
- W4385626995 hasConceptScore W4385626995C2780451532 @default.
- W4385626995 hasConceptScore W4385626995C29202148 @default.
- W4385626995 hasConceptScore W4385626995C31258907 @default.
- W4385626995 hasConceptScore W4385626995C33923547 @default.
- W4385626995 hasConceptScore W4385626995C41008148 @default.
- W4385626995 hasConceptScore W4385626995C48044578 @default.
- W4385626995 hasConceptScore W4385626995C77088390 @default.
- W4385626995 hasConceptScore W4385626995C97541855 @default.
- W4385626995 hasLocation W43856269951 @default.
- W4385626995 hasOpenAccess W4385626995 @default.
- W4385626995 hasPrimaryLocation W43856269951 @default.
- W4385626995 hasRelatedWork W2959276766 @default.
- W4385626995 hasRelatedWork W2982507805 @default.
- W4385626995 hasRelatedWork W3074294383 @default.
- W4385626995 hasRelatedWork W3111983280 @default.
- W4385626995 hasRelatedWork W4206599290 @default.
- W4385626995 hasRelatedWork W4225269853 @default.
- W4385626995 hasRelatedWork W4226470542 @default.