Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385631084> ?p ?o ?g. }
- W4385631084 endingPage "116293" @default.
- W4385631084 startingPage "116293" @default.
- W4385631084 abstract "In this work, we propose a deep learning (DL)-based constitutive model for investigating the cyclic viscoelastic-viscoplastic-damage behavior of nanoparticle/epoxy nanocomposites with moisture content. For this, a long short-term memory network is trained using a combined framework of a sampling technique and a perturbation method. The training framework, along with the training data generated by an experimentally validated viscoelastic-viscoplastic model, enables the DL model to accurately capture the rate-dependent stress–strain relationship and consistent tangent moduli. In addition, the DL-based constitutive model is implemented into finite element analysis. Finite element simulations are performed to study the effect of load rate and moisture content on the force–displacement response of nanoparticle/epoxy samples. Numerical examples show that the computational efficiency of the DL model depends on the loading condition and is significantly higher than the conventional constitutive model. Furthermore, comparing numerical results and experimental data demonstrates good agreement with different nanoparticle and moisture contents." @default.
- W4385631084 created "2023-08-08" @default.
- W4385631084 creator A5000615966 @default.
- W4385631084 creator A5019564896 @default.
- W4385631084 creator A5027368055 @default.
- W4385631084 creator A5050487659 @default.
- W4385631084 creator A5083929257 @default.
- W4385631084 date "2023-10-01" @default.
- W4385631084 modified "2023-09-23" @default.
- W4385631084 title "A machine learning-based viscoelastic–viscoplastic model for epoxy nanocomposites with moisture content" @default.
- W4385631084 cites W1498436455 @default.
- W4385631084 cites W1640536487 @default.
- W4385631084 cites W1977168277 @default.
- W4385631084 cites W1978354948 @default.
- W4385631084 cites W2004320657 @default.
- W4385631084 cites W2007560023 @default.
- W4385631084 cites W2028726382 @default.
- W4385631084 cites W2033793034 @default.
- W4385631084 cites W2044973463 @default.
- W4385631084 cites W2064675550 @default.
- W4385631084 cites W2073629427 @default.
- W4385631084 cites W2074004193 @default.
- W4385631084 cites W2083456547 @default.
- W4385631084 cites W2089331403 @default.
- W4385631084 cites W2089740379 @default.
- W4385631084 cites W2093998929 @default.
- W4385631084 cites W2094099085 @default.
- W4385631084 cites W2113138993 @default.
- W4385631084 cites W2119115917 @default.
- W4385631084 cites W2133578162 @default.
- W4385631084 cites W2135184520 @default.
- W4385631084 cites W2136848157 @default.
- W4385631084 cites W2137024545 @default.
- W4385631084 cites W2143218676 @default.
- W4385631084 cites W2191324845 @default.
- W4385631084 cites W2197559113 @default.
- W4385631084 cites W2434618280 @default.
- W4385631084 cites W2590185544 @default.
- W4385631084 cites W2746308477 @default.
- W4385631084 cites W2756283039 @default.
- W4385631084 cites W2770687454 @default.
- W4385631084 cites W2790118561 @default.
- W4385631084 cites W2908963506 @default.
- W4385631084 cites W2921849758 @default.
- W4385631084 cites W2936161490 @default.
- W4385631084 cites W2951616049 @default.
- W4385631084 cites W2969744700 @default.
- W4385631084 cites W2969956788 @default.
- W4385631084 cites W2984016396 @default.
- W4385631084 cites W3006475788 @default.
- W4385631084 cites W3011163836 @default.
- W4385631084 cites W3025446192 @default.
- W4385631084 cites W3028072861 @default.
- W4385631084 cites W3040235575 @default.
- W4385631084 cites W3080517163 @default.
- W4385631084 cites W3103013643 @default.
- W4385631084 cites W3156238886 @default.
- W4385631084 cites W3160794404 @default.
- W4385631084 cites W3191891057 @default.
- W4385631084 cites W3199814420 @default.
- W4385631084 cites W3208492199 @default.
- W4385631084 cites W4206954592 @default.
- W4385631084 cites W4210490809 @default.
- W4385631084 cites W4225405004 @default.
- W4385631084 cites W4283032170 @default.
- W4385631084 cites W4285586698 @default.
- W4385631084 cites W4304776784 @default.
- W4385631084 cites W4310286275 @default.
- W4385631084 cites W4319878959 @default.
- W4385631084 cites W4376141715 @default.
- W4385631084 doi "https://doi.org/10.1016/j.cma.2023.116293" @default.
- W4385631084 hasPublicationYear "2023" @default.
- W4385631084 type Work @default.
- W4385631084 citedByCount "0" @default.
- W4385631084 crossrefType "journal-article" @default.
- W4385631084 hasAuthorship W4385631084A5000615966 @default.
- W4385631084 hasAuthorship W4385631084A5019564896 @default.
- W4385631084 hasAuthorship W4385631084A5027368055 @default.
- W4385631084 hasAuthorship W4385631084A5050487659 @default.
- W4385631084 hasAuthorship W4385631084A5083929257 @default.
- W4385631084 hasBestOaLocation W43856310842 @default.
- W4385631084 hasConcept C127413603 @default.
- W4385631084 hasConcept C135628077 @default.
- W4385631084 hasConcept C159985019 @default.
- W4385631084 hasConcept C166595027 @default.
- W4385631084 hasConcept C186541917 @default.
- W4385631084 hasConcept C192562407 @default.
- W4385631084 hasConcept C202973686 @default.
- W4385631084 hasConcept C55359492 @default.
- W4385631084 hasConcept C66938386 @default.
- W4385631084 hasConceptScore W4385631084C127413603 @default.
- W4385631084 hasConceptScore W4385631084C135628077 @default.
- W4385631084 hasConceptScore W4385631084C159985019 @default.
- W4385631084 hasConceptScore W4385631084C166595027 @default.
- W4385631084 hasConceptScore W4385631084C186541917 @default.
- W4385631084 hasConceptScore W4385631084C192562407 @default.
- W4385631084 hasConceptScore W4385631084C202973686 @default.
- W4385631084 hasConceptScore W4385631084C55359492 @default.