Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385633360> ?p ?o ?g. }
- W4385633360 endingPage "101336" @default.
- W4385633360 startingPage "101336" @default.
- W4385633360 abstract "PurposeThe purpose of this work was to investigate the use of a segmentation approach that could potentially improve the speed and reproducibility of contouring during magnetic resonance–guided adaptive radiation therapy.Methods and MaterialsThe segmentation algorithm was based on a hybrid deep neural network and graph optimization approach that also allows rapid user intervention (Deep layered optimal graph image segmentation of multiple objects and surfaces [LOGISMOS] + just enough interaction [JEI]). A total of 115 magnetic resonance–data sets were used for training and quantitative assessment. Expert segmentations were used as the independent standard for the prostate, seminal vesicles, bladder, rectum, and femoral heads for all 115 data sets. In addition, 3 independent radiation oncologists contoured the prostate, seminal vesicles, and rectum for a subset of patients such that the interobserver variability could be quantified. Consensus contours were then generated from these independent contours using a simultaneous truth and performance level estimation approach, and the deviation of Deep LOGISMOS + JEI contours to the consensus contours was evaluated and compared with the interobserver variability.ResultsThe absolute accuracy of Deep LOGISMOS + JEI generated contours was evaluated using median absolute surface-to-surface distance which ranged from a minimum of 0.20 mm for the bladder to a maximum of 0.93 mm for the prostate compared with the independent standard across all data sets. The median relative surface-to-surface distance was less than 0.17 mm for all organs, indicating that the Deep LOGISMOS + JEI algorithm did not exhibit a systematic under- or oversegmentation. Interobserver variability testing yielded a mean absolute surface-to-surface distance of 0.93, 1.04, and 0.81 mm for the prostate, seminal vesicles, and rectum, respectively. In comparison, the deviation of Deep LOGISMOS + JEI from consensus simultaneous truth and performance level estimation contours was 0.57, 0.64, and 0.55 mm for the same organs. On average, the Deep LOGISMOS algorithm took less than 26 seconds for contour segmentation.ConclusionsDeep LOGISMOS + JEI segmentation efficiently generated clinically acceptable prostate and normal tissue contours, potentially limiting the need for time intensive manual contouring with each fraction. The purpose of this work was to investigate the use of a segmentation approach that could potentially improve the speed and reproducibility of contouring during magnetic resonance–guided adaptive radiation therapy. The segmentation algorithm was based on a hybrid deep neural network and graph optimization approach that also allows rapid user intervention (Deep layered optimal graph image segmentation of multiple objects and surfaces [LOGISMOS] + just enough interaction [JEI]). A total of 115 magnetic resonance–data sets were used for training and quantitative assessment. Expert segmentations were used as the independent standard for the prostate, seminal vesicles, bladder, rectum, and femoral heads for all 115 data sets. In addition, 3 independent radiation oncologists contoured the prostate, seminal vesicles, and rectum for a subset of patients such that the interobserver variability could be quantified. Consensus contours were then generated from these independent contours using a simultaneous truth and performance level estimation approach, and the deviation of Deep LOGISMOS + JEI contours to the consensus contours was evaluated and compared with the interobserver variability. The absolute accuracy of Deep LOGISMOS + JEI generated contours was evaluated using median absolute surface-to-surface distance which ranged from a minimum of 0.20 mm for the bladder to a maximum of 0.93 mm for the prostate compared with the independent standard across all data sets. The median relative surface-to-surface distance was less than 0.17 mm for all organs, indicating that the Deep LOGISMOS + JEI algorithm did not exhibit a systematic under- or oversegmentation. Interobserver variability testing yielded a mean absolute surface-to-surface distance of 0.93, 1.04, and 0.81 mm for the prostate, seminal vesicles, and rectum, respectively. In comparison, the deviation of Deep LOGISMOS + JEI from consensus simultaneous truth and performance level estimation contours was 0.57, 0.64, and 0.55 mm for the same organs. On average, the Deep LOGISMOS algorithm took less than 26 seconds for contour segmentation. Deep LOGISMOS + JEI segmentation efficiently generated clinically acceptable prostate and normal tissue contours, potentially limiting the need for time intensive manual contouring with each fraction." @default.
- W4385633360 created "2023-08-08" @default.
- W4385633360 creator A5005433030 @default.
- W4385633360 creator A5009369265 @default.
- W4385633360 creator A5018432165 @default.
- W4385633360 creator A5018836634 @default.
- W4385633360 creator A5021903894 @default.
- W4385633360 creator A5040980527 @default.
- W4385633360 creator A5045551248 @default.
- W4385633360 creator A5051291128 @default.
- W4385633360 creator A5051325842 @default.
- W4385633360 creator A5057148464 @default.
- W4385633360 creator A5061078231 @default.
- W4385633360 creator A5084754408 @default.
- W4385633360 creator A5088498661 @default.
- W4385633360 creator A5089819785 @default.
- W4385633360 date "2023-08-01" @default.
- W4385633360 modified "2023-09-24" @default.
- W4385633360 title "A Technique to Enable Efficient Adaptive Radiation Therapy: Automated Contouring of Prostate and Adjacent Organs" @default.
- W4385633360 cites W161036267 @default.
- W4385633360 cites W1995523322 @default.
- W4385633360 cites W2017973502 @default.
- W4385633360 cites W2078121754 @default.
- W4385633360 cites W2100296123 @default.
- W4385633360 cites W2119419171 @default.
- W4385633360 cites W2127318120 @default.
- W4385633360 cites W2148347694 @default.
- W4385633360 cites W2164774194 @default.
- W4385633360 cites W2477265066 @default.
- W4385633360 cites W2611656847 @default.
- W4385633360 cites W2777272045 @default.
- W4385633360 cites W2901004333 @default.
- W4385633360 cites W3037430895 @default.
- W4385633360 cites W3039947620 @default.
- W4385633360 cites W3112701542 @default.
- W4385633360 cites W3183670842 @default.
- W4385633360 cites W3204255739 @default.
- W4385633360 cites W4210899372 @default.
- W4385633360 cites W4296163187 @default.
- W4385633360 doi "https://doi.org/10.1016/j.adro.2023.101336" @default.
- W4385633360 hasPublicationYear "2023" @default.
- W4385633360 type Work @default.
- W4385633360 citedByCount "0" @default.
- W4385633360 crossrefType "journal-article" @default.
- W4385633360 hasAuthorship W4385633360A5005433030 @default.
- W4385633360 hasAuthorship W4385633360A5009369265 @default.
- W4385633360 hasAuthorship W4385633360A5018432165 @default.
- W4385633360 hasAuthorship W4385633360A5018836634 @default.
- W4385633360 hasAuthorship W4385633360A5021903894 @default.
- W4385633360 hasAuthorship W4385633360A5040980527 @default.
- W4385633360 hasAuthorship W4385633360A5045551248 @default.
- W4385633360 hasAuthorship W4385633360A5051291128 @default.
- W4385633360 hasAuthorship W4385633360A5051325842 @default.
- W4385633360 hasAuthorship W4385633360A5057148464 @default.
- W4385633360 hasAuthorship W4385633360A5061078231 @default.
- W4385633360 hasAuthorship W4385633360A5084754408 @default.
- W4385633360 hasAuthorship W4385633360A5088498661 @default.
- W4385633360 hasAuthorship W4385633360A5089819785 @default.
- W4385633360 hasBestOaLocation W43856333601 @default.
- W4385633360 hasConcept C105795698 @default.
- W4385633360 hasConcept C121608353 @default.
- W4385633360 hasConcept C121684516 @default.
- W4385633360 hasConcept C126322002 @default.
- W4385633360 hasConcept C126838900 @default.
- W4385633360 hasConcept C141071460 @default.
- W4385633360 hasConcept C143409427 @default.
- W4385633360 hasConcept C146849305 @default.
- W4385633360 hasConcept C154945302 @default.
- W4385633360 hasConcept C22679943 @default.
- W4385633360 hasConcept C2776235491 @default.
- W4385633360 hasConcept C2779104521 @default.
- W4385633360 hasConcept C2780192828 @default.
- W4385633360 hasConcept C2781074409 @default.
- W4385633360 hasConcept C2989005 @default.
- W4385633360 hasConcept C31972630 @default.
- W4385633360 hasConcept C33923547 @default.
- W4385633360 hasConcept C41008148 @default.
- W4385633360 hasConcept C71924100 @default.
- W4385633360 hasConcept C89600930 @default.
- W4385633360 hasConcept C9893847 @default.
- W4385633360 hasConceptScore W4385633360C105795698 @default.
- W4385633360 hasConceptScore W4385633360C121608353 @default.
- W4385633360 hasConceptScore W4385633360C121684516 @default.
- W4385633360 hasConceptScore W4385633360C126322002 @default.
- W4385633360 hasConceptScore W4385633360C126838900 @default.
- W4385633360 hasConceptScore W4385633360C141071460 @default.
- W4385633360 hasConceptScore W4385633360C143409427 @default.
- W4385633360 hasConceptScore W4385633360C146849305 @default.
- W4385633360 hasConceptScore W4385633360C154945302 @default.
- W4385633360 hasConceptScore W4385633360C22679943 @default.
- W4385633360 hasConceptScore W4385633360C2776235491 @default.
- W4385633360 hasConceptScore W4385633360C2779104521 @default.
- W4385633360 hasConceptScore W4385633360C2780192828 @default.
- W4385633360 hasConceptScore W4385633360C2781074409 @default.
- W4385633360 hasConceptScore W4385633360C2989005 @default.
- W4385633360 hasConceptScore W4385633360C31972630 @default.
- W4385633360 hasConceptScore W4385633360C33923547 @default.
- W4385633360 hasConceptScore W4385633360C41008148 @default.