Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385638344> ?p ?o ?g. }
- W4385638344 endingPage "171250" @default.
- W4385638344 startingPage "171250" @default.
- W4385638344 abstract "The nonlinear Schrödinger equation (NLSE) is a fundamental and significant physical model that plays a crucial role in demonstrating the dynamics of optical soliton in optical fiber theory. The propagation of solitons in nonlinear optical fibers has garnered substantial interest due to its broad spectrum of applications, particularly in ultrafast signal routing systems and short light pulses for communications. This article focuses on investigating the impact of multiplicative noise on the solutions of this governing model. To achieve this, three distinct methods, namely the enhanced modified extended tanh expansion (METE) method, the generalized Kudryashov (GK) approach and the extended modified auxiliary equation mapping (EMAEM) method are employed to obtain a new variety of stochastic solutions. The perception of how noise intensity impacts the transmission of waves is a fundamental and critical issue in various fields. In the context of this study, an equation describes an exact wave pattern under the condition that s (representing noise intensity) equals zero. In such cases, the observed pattern remains undisturbed and matches the expected theoretical wave pattern. However, as the strength of noise s increases, the observed pattern begins to deviate from the ideal wave pattern and exhibits signs of damage or distortion. Furthermore, the stability analysis for the stochastic NLSE is performed, providing valuable insights into the behavior solutions as the strength of multiplicative noise increases. The validation of computational results through stability analysis enhances the confidence in the findings of the study. All the mathematical calculations, as well as graphical representations, have been meticulously achieved to present a comprehensive and detailed understanding of the impact of multiplicative on soliton propagation in nonlinear optical fibers." @default.
- W4385638344 created "2023-08-08" @default.
- W4385638344 creator A5013313431 @default.
- W4385638344 creator A5027409407 @default.
- W4385638344 creator A5049225376 @default.
- W4385638344 creator A5063924801 @default.
- W4385638344 creator A5077805344 @default.
- W4385638344 creator A5082152381 @default.
- W4385638344 creator A5092607956 @default.
- W4385638344 date "2023-10-01" @default.
- W4385638344 modified "2023-10-13" @default.
- W4385638344 title "On the solitonic wave structures and stability analysis of the stochastic nonlinear Schrödinger equation with the impact of multiplicative noise" @default.
- W4385638344 cites W1582701135 @default.
- W4385638344 cites W2003435189 @default.
- W4385638344 cites W2005438998 @default.
- W4385638344 cites W2011516671 @default.
- W4385638344 cites W2011846139 @default.
- W4385638344 cites W2018295752 @default.
- W4385638344 cites W2045123899 @default.
- W4385638344 cites W2046866578 @default.
- W4385638344 cites W2051150731 @default.
- W4385638344 cites W2054460839 @default.
- W4385638344 cites W2064697961 @default.
- W4385638344 cites W2069359929 @default.
- W4385638344 cites W2085967987 @default.
- W4385638344 cites W2086713246 @default.
- W4385638344 cites W2606848891 @default.
- W4385638344 cites W2921925230 @default.
- W4385638344 cites W2962799205 @default.
- W4385638344 cites W2962967279 @default.
- W4385638344 cites W3015782749 @default.
- W4385638344 cites W3041239216 @default.
- W4385638344 cites W3095932949 @default.
- W4385638344 cites W3103427077 @default.
- W4385638344 cites W3118550558 @default.
- W4385638344 cites W3118623615 @default.
- W4385638344 cites W3166727831 @default.
- W4385638344 cites W3176107491 @default.
- W4385638344 cites W32222873 @default.
- W4385638344 cites W4200106792 @default.
- W4385638344 cites W4200443686 @default.
- W4385638344 cites W4200492131 @default.
- W4385638344 cites W4220817066 @default.
- W4385638344 cites W4225012051 @default.
- W4385638344 cites W4226193781 @default.
- W4385638344 cites W4235356187 @default.
- W4385638344 cites W4282046570 @default.
- W4385638344 cites W4285600288 @default.
- W4385638344 cites W4293177093 @default.
- W4385638344 cites W4307157714 @default.
- W4385638344 cites W4323046206 @default.
- W4385638344 cites W4383566814 @default.
- W4385638344 doi "https://doi.org/10.1016/j.ijleo.2023.171250" @default.
- W4385638344 hasPublicationYear "2023" @default.
- W4385638344 type Work @default.
- W4385638344 citedByCount "1" @default.
- W4385638344 crossrefType "journal-article" @default.
- W4385638344 hasAuthorship W4385638344A5013313431 @default.
- W4385638344 hasAuthorship W4385638344A5027409407 @default.
- W4385638344 hasAuthorship W4385638344A5049225376 @default.
- W4385638344 hasAuthorship W4385638344A5063924801 @default.
- W4385638344 hasAuthorship W4385638344A5077805344 @default.
- W4385638344 hasAuthorship W4385638344A5082152381 @default.
- W4385638344 hasAuthorship W4385638344A5092607956 @default.
- W4385638344 hasConcept C112972136 @default.
- W4385638344 hasConcept C115961682 @default.
- W4385638344 hasConcept C119857082 @default.
- W4385638344 hasConcept C121332964 @default.
- W4385638344 hasConcept C121864883 @default.
- W4385638344 hasConcept C131021393 @default.
- W4385638344 hasConcept C13412647 @default.
- W4385638344 hasConcept C134306372 @default.
- W4385638344 hasConcept C151730666 @default.
- W4385638344 hasConcept C154945302 @default.
- W4385638344 hasConcept C158622935 @default.
- W4385638344 hasConcept C18015164 @default.
- W4385638344 hasConcept C2779343474 @default.
- W4385638344 hasConcept C28826006 @default.
- W4385638344 hasConcept C33923547 @default.
- W4385638344 hasConcept C41008148 @default.
- W4385638344 hasConcept C42747912 @default.
- W4385638344 hasConcept C62520636 @default.
- W4385638344 hasConcept C761482 @default.
- W4385638344 hasConcept C76155785 @default.
- W4385638344 hasConcept C83774755 @default.
- W4385638344 hasConcept C86803240 @default.
- W4385638344 hasConcept C87651913 @default.
- W4385638344 hasConcept C99498987 @default.
- W4385638344 hasConceptScore W4385638344C112972136 @default.
- W4385638344 hasConceptScore W4385638344C115961682 @default.
- W4385638344 hasConceptScore W4385638344C119857082 @default.
- W4385638344 hasConceptScore W4385638344C121332964 @default.
- W4385638344 hasConceptScore W4385638344C121864883 @default.
- W4385638344 hasConceptScore W4385638344C131021393 @default.
- W4385638344 hasConceptScore W4385638344C13412647 @default.
- W4385638344 hasConceptScore W4385638344C134306372 @default.
- W4385638344 hasConceptScore W4385638344C151730666 @default.
- W4385638344 hasConceptScore W4385638344C154945302 @default.