Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385647640> ?p ?o ?g. }
- W4385647640 endingPage "828" @default.
- W4385647640 startingPage "806" @default.
- W4385647640 abstract "In $d$ dimensions, accurately approximating an arbitrary function oscillating with frequency $lesssim k$ requires $sim$$k^d$ degrees of freedom. A numerical method for solving the Helmholtz equation (with wavenumber $k$ and in $d$ dimensions) suffers from the pollution effect if, as $k→∞$, the total number of degrees of freedom needed to maintain accuracy grows faster than this natural threshold (i.e., faster than $k^d$ for domain-based formulations, such as finite element methods, and $k^{d-1}$ for boundary-based formulations, such as boundary element methods). It is well known that the $h$-version of the finite element method (FEM) (where accuracy is increased by decreasing the meshwidth $h$ and keeping the polynomial degree $p$ fixed) suffers from the pollution effect, and research over the last $sim$30 years has resulted in a near-complete rigorous understanding of how quickly the number of degrees of freedom must grow with $k$ to maintain accuracy (and how this depends on both $p$ and properties of the scatterer). In contrast to the $h$-FEM, at least empirically, the $h$-version of the boundary element method (BEM) does not suffer from the pollution effect (recall that in the boundary element method the scattering problem is reformulated as an integral equation on the boundary of the scatterer, with this integral equation then solved numerically using a finite element--type approximation space). However, the current best results in the literature on how quickly the number of degrees of freedom for the $h$-BEM must grow with $k$ to maintain accuracy fall short of proving this. In this paper, we prove that the $h$-version of the Galerkin method applied to the standard second-kind boundary integral equations for solving the Helmholtz exterior Dirichlet problem does not suffer from the pollution effect when the obstacle is nontrapping (i.e., does not trap geometric-optic rays). While the proof of this result relies on information about the large-$k$ behavior of Helmholtz solution operators, we show in an appendix how the result can be proved using only Fourier series and asymptotics of Hankel and Bessel functions when the obstacle is a 2-d ball." @default.
- W4385647640 created "2023-08-09" @default.
- W4385647640 creator A5025891836 @default.
- W4385647640 creator A5083248653 @default.
- W4385647640 date "2023-08-01" @default.
- W4385647640 modified "2023-09-25" @default.
- W4385647640 title "Does the Helmholtz Boundary Element Method Suffer from the Pollution Effect?" @default.
- W4385647640 cites W118996803 @default.
- W4385647640 cites W1504642953 @default.
- W4385647640 cites W1720292799 @default.
- W4385647640 cites W1943976203 @default.
- W4385647640 cites W1967279435 @default.
- W4385647640 cites W1970136394 @default.
- W4385647640 cites W1970622200 @default.
- W4385647640 cites W1976538983 @default.
- W4385647640 cites W1984741461 @default.
- W4385647640 cites W2004475615 @default.
- W4385647640 cites W2008747183 @default.
- W4385647640 cites W2010444296 @default.
- W4385647640 cites W2014208709 @default.
- W4385647640 cites W2014983931 @default.
- W4385647640 cites W2021567871 @default.
- W4385647640 cites W2021615646 @default.
- W4385647640 cites W2025124289 @default.
- W4385647640 cites W2029342920 @default.
- W4385647640 cites W2029966922 @default.
- W4385647640 cites W2037092148 @default.
- W4385647640 cites W2037475392 @default.
- W4385647640 cites W2038870672 @default.
- W4385647640 cites W2042015995 @default.
- W4385647640 cites W2047212386 @default.
- W4385647640 cites W2053149981 @default.
- W4385647640 cites W2056171461 @default.
- W4385647640 cites W2061455778 @default.
- W4385647640 cites W2065286616 @default.
- W4385647640 cites W2068598289 @default.
- W4385647640 cites W2071928229 @default.
- W4385647640 cites W2078908559 @default.
- W4385647640 cites W2080631773 @default.
- W4385647640 cites W2084768760 @default.
- W4385647640 cites W2086085861 @default.
- W4385647640 cites W2087828859 @default.
- W4385647640 cites W2097157460 @default.
- W4385647640 cites W2097420213 @default.
- W4385647640 cites W2111021555 @default.
- W4385647640 cites W2115850109 @default.
- W4385647640 cites W2135380580 @default.
- W4385647640 cites W2142167905 @default.
- W4385647640 cites W2152787993 @default.
- W4385647640 cites W2156154693 @default.
- W4385647640 cites W2158511063 @default.
- W4385647640 cites W2256669603 @default.
- W4385647640 cites W2338955318 @default.
- W4385647640 cites W2348703335 @default.
- W4385647640 cites W2430618500 @default.
- W4385647640 cites W2496081756 @default.
- W4385647640 cites W2522648897 @default.
- W4385647640 cites W2530061130 @default.
- W4385647640 cites W2592456637 @default.
- W4385647640 cites W2603483824 @default.
- W4385647640 cites W2806468793 @default.
- W4385647640 cites W2898732677 @default.
- W4385647640 cites W2902526927 @default.
- W4385647640 cites W2907967013 @default.
- W4385647640 cites W2909834897 @default.
- W4385647640 cites W2943167654 @default.
- W4385647640 cites W2945655205 @default.
- W4385647640 cites W2963292939 @default.
- W4385647640 cites W2963438872 @default.
- W4385647640 cites W2963691989 @default.
- W4385647640 cites W2963961138 @default.
- W4385647640 cites W2988229339 @default.
- W4385647640 cites W2996141151 @default.
- W4385647640 cites W3015507268 @default.
- W4385647640 cites W3024688492 @default.
- W4385647640 cites W3041134036 @default.
- W4385647640 cites W3091748925 @default.
- W4385647640 cites W3106381385 @default.
- W4385647640 cites W3153003118 @default.
- W4385647640 cites W3155493545 @default.
- W4385647640 cites W3201069451 @default.
- W4385647640 cites W3204708751 @default.
- W4385647640 cites W4213212409 @default.
- W4385647640 cites W4231706539 @default.
- W4385647640 cites W4241640491 @default.
- W4385647640 cites W4252713891 @default.
- W4385647640 cites W4281611113 @default.
- W4385647640 cites W4292079583 @default.
- W4385647640 cites W4300650163 @default.
- W4385647640 cites W4509327 @default.
- W4385647640 doi "https://doi.org/10.1137/22m1474199" @default.
- W4385647640 hasPublicationYear "2023" @default.
- W4385647640 type Work @default.
- W4385647640 citedByCount "0" @default.
- W4385647640 crossrefType "journal-article" @default.
- W4385647640 hasAuthorship W4385647640A5025891836 @default.
- W4385647640 hasAuthorship W4385647640A5083248653 @default.
- W4385647640 hasBestOaLocation W43856476402 @default.