Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385647910> ?p ?o ?g. }
- W4385647910 endingPage "158" @default.
- W4385647910 startingPage "158" @default.
- W4385647910 abstract "Liveness detection for fingerprint impressions plays a role in the meaningful prevention of any unauthorized activity or phishing attempt. The accessibility of unique individual identification has increased the popularity of biometrics. Deep learning with computer vision has proven remarkable results in image classification, detection, and many others. The proposed methodology relies on an attention model and ResNet convolutions. Spatial attention (SA) and channel attention (CA) models were used sequentially to enhance feature learning. A three-fold sequential attention model is used along with five convolution learning layers. The method’s performances have been tested across different pooling strategies, such as Max, Average, and Stochastic, over the LivDet-2021 dataset. Comparisons against different state-of-the-art variants of Convolutional Neural Networks, such as DenseNet121, VGG19, InceptionV3, and conventional ResNet50, have been carried out. In particular, tests have been aimed at assessing ResNet34 and ResNet50 models on feature extraction by further enhancing the sequential attention model. A Multilayer Perceptron (MLP) classifier used alongside a fully connected layer returns the ultimate prediction of the entire stack. Finally, the proposed method is also evaluated on feature extraction with and without attention models for ResNet and considering different pooling strategies." @default.
- W4385647910 created "2023-08-09" @default.
- W4385647910 creator A5009365084 @default.
- W4385647910 creator A5025539382 @default.
- W4385647910 creator A5032237013 @default.
- W4385647910 creator A5071514497 @default.
- W4385647910 creator A5072741449 @default.
- W4385647910 creator A5083631981 @default.
- W4385647910 creator A5089050255 @default.
- W4385647910 date "2023-08-07" @default.
- W4385647910 modified "2023-10-14" @default.
- W4385647910 title "Enhancing Fingerprint Liveness Detection Accuracy Using Deep Learning: A Comprehensive Study and Novel Approach" @default.
- W4385647910 cites W1584545576 @default.
- W4385647910 cites W1686543064 @default.
- W4385647910 cites W2000889716 @default.
- W4385647910 cites W2003939882 @default.
- W4385647910 cites W2012611697 @default.
- W4385647910 cites W2071095136 @default.
- W4385647910 cites W2107845065 @default.
- W4385647910 cites W2157055326 @default.
- W4385647910 cites W2194775991 @default.
- W4385647910 cites W2318770634 @default.
- W4385647910 cites W2531409750 @default.
- W4385647910 cites W2535485187 @default.
- W4385647910 cites W2537422620 @default.
- W4385647910 cites W2557575422 @default.
- W4385647910 cites W2884585870 @default.
- W4385647910 cites W2898325432 @default.
- W4385647910 cites W2956767096 @default.
- W4385647910 cites W2963163009 @default.
- W4385647910 cites W2975485695 @default.
- W4385647910 cites W2986379325 @default.
- W4385647910 cites W3023066750 @default.
- W4385647910 cites W3094512293 @default.
- W4385647910 cites W3141355850 @default.
- W4385647910 cites W3187837600 @default.
- W4385647910 cites W3195496058 @default.
- W4385647910 cites W3196289623 @default.
- W4385647910 cites W4206015134 @default.
- W4385647910 cites W4220687104 @default.
- W4385647910 cites W4291000701 @default.
- W4385647910 cites W4296117543 @default.
- W4385647910 cites W4313855689 @default.
- W4385647910 cites W4382488116 @default.
- W4385647910 doi "https://doi.org/10.3390/jimaging9080158" @default.
- W4385647910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37623690" @default.
- W4385647910 hasPublicationYear "2023" @default.
- W4385647910 type Work @default.
- W4385647910 citedByCount "0" @default.
- W4385647910 crossrefType "journal-article" @default.
- W4385647910 hasAuthorship W4385647910A5009365084 @default.
- W4385647910 hasAuthorship W4385647910A5025539382 @default.
- W4385647910 hasAuthorship W4385647910A5032237013 @default.
- W4385647910 hasAuthorship W4385647910A5071514497 @default.
- W4385647910 hasAuthorship W4385647910A5072741449 @default.
- W4385647910 hasAuthorship W4385647910A5083631981 @default.
- W4385647910 hasAuthorship W4385647910A5089050255 @default.
- W4385647910 hasBestOaLocation W43856479101 @default.
- W4385647910 hasConcept C108583219 @default.
- W4385647910 hasConcept C119857082 @default.
- W4385647910 hasConcept C138885662 @default.
- W4385647910 hasConcept C153180895 @default.
- W4385647910 hasConcept C154945302 @default.
- W4385647910 hasConcept C15569618 @default.
- W4385647910 hasConcept C184297639 @default.
- W4385647910 hasConcept C199360897 @default.
- W4385647910 hasConcept C2776401178 @default.
- W4385647910 hasConcept C41008148 @default.
- W4385647910 hasConcept C41895202 @default.
- W4385647910 hasConcept C50644808 @default.
- W4385647910 hasConcept C52622490 @default.
- W4385647910 hasConcept C60908668 @default.
- W4385647910 hasConcept C70437156 @default.
- W4385647910 hasConcept C81363708 @default.
- W4385647910 hasConcept C95623464 @default.
- W4385647910 hasConceptScore W4385647910C108583219 @default.
- W4385647910 hasConceptScore W4385647910C119857082 @default.
- W4385647910 hasConceptScore W4385647910C138885662 @default.
- W4385647910 hasConceptScore W4385647910C153180895 @default.
- W4385647910 hasConceptScore W4385647910C154945302 @default.
- W4385647910 hasConceptScore W4385647910C15569618 @default.
- W4385647910 hasConceptScore W4385647910C184297639 @default.
- W4385647910 hasConceptScore W4385647910C199360897 @default.
- W4385647910 hasConceptScore W4385647910C2776401178 @default.
- W4385647910 hasConceptScore W4385647910C41008148 @default.
- W4385647910 hasConceptScore W4385647910C41895202 @default.
- W4385647910 hasConceptScore W4385647910C50644808 @default.
- W4385647910 hasConceptScore W4385647910C52622490 @default.
- W4385647910 hasConceptScore W4385647910C60908668 @default.
- W4385647910 hasConceptScore W4385647910C70437156 @default.
- W4385647910 hasConceptScore W4385647910C81363708 @default.
- W4385647910 hasConceptScore W4385647910C95623464 @default.
- W4385647910 hasIssue "8" @default.
- W4385647910 hasLocation W43856479101 @default.
- W4385647910 hasLocation W43856479102 @default.
- W4385647910 hasOpenAccess W4385647910 @default.
- W4385647910 hasPrimaryLocation W43856479101 @default.
- W4385647910 hasRelatedWork W1501213224 @default.