Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385649849> ?p ?o ?g. }
- W4385649849 abstract "Abstract The ever decreasing cost of sequencing and the multiplication of potential applications for the study of metagenomes have led to an unprecedented increase in the volume of data generated. One of the most prevalent applications of metagenomics is the study of microbial environments, such as the human gut. The gut microbiome has been shown to play an important role in human health, providing critical information for patient diagnosis and prognosis. However, the analysis of metagenomic data remains challenging for many reasons, including reference catalogs, sparsity and compositionality of the data, to name a few. Deep learning (DL) enables novel and promising approaches that complement state-of-the-art microbiome pipelines. In fact, DL-based methods can address almost all aspects of microbiome analysis, including novel pathogen detection, sequence classification, patient stratification, and disease prediction. Beyond the generation of predictive models, a key aspect of such methods remains their interpretability. In this article, we provide a systematic review of deep learning approaches in metagenomics, whether based on convolutional networks, autoencoders, or attention-based models. These methods aggregate contextualized data and pave the way for improved patient care and a better understanding of the key role the microbiome plays in our health." @default.
- W4385649849 created "2023-08-09" @default.
- W4385649849 creator A5051022071 @default.
- W4385649849 creator A5056937785 @default.
- W4385649849 creator A5088462417 @default.
- W4385649849 creator A5088630634 @default.
- W4385649849 date "2023-08-08" @default.
- W4385649849 modified "2023-09-25" @default.
- W4385649849 title "Deep learning methods in metagenomics: a systematic review" @default.
- W4385649849 cites W1501213224 @default.
- W4385649849 cites W1584790813 @default.
- W4385649849 cites W1878521557 @default.
- W4385649849 cites W1890802958 @default.
- W4385649849 cites W1964027278 @default.
- W4385649849 cites W1983233383 @default.
- W4385649849 cites W1998601670 @default.
- W4385649849 cites W2001561488 @default.
- W4385649849 cites W2004549986 @default.
- W4385649849 cites W2023046869 @default.
- W4385649849 cites W2045204781 @default.
- W4385649849 cites W2064675550 @default.
- W4385649849 cites W2083501377 @default.
- W4385649849 cites W2095879381 @default.
- W4385649849 cites W2097124003 @default.
- W4385649849 cites W2116895571 @default.
- W4385649849 cites W2120902911 @default.
- W4385649849 cites W2121291798 @default.
- W4385649849 cites W2124637227 @default.
- W4385649849 cites W2147526914 @default.
- W4385649849 cites W2147800946 @default.
- W4385649849 cites W2151277589 @default.
- W4385649849 cites W2159255279 @default.
- W4385649849 cites W2159954944 @default.
- W4385649849 cites W2188930066 @default.
- W4385649849 cites W2250539671 @default.
- W4385649849 cites W2473355215 @default.
- W4385649849 cites W2732139758 @default.
- W4385649849 cites W2754579667 @default.
- W4385649849 cites W2762569468 @default.
- W4385649849 cites W2767445485 @default.
- W4385649849 cites W2773939681 @default.
- W4385649849 cites W2808516166 @default.
- W4385649849 cites W2855293443 @default.
- W4385649849 cites W2906991531 @default.
- W4385649849 cites W2908180678 @default.
- W4385649849 cites W2910615673 @default.
- W4385649849 cites W2911884040 @default.
- W4385649849 cites W2912735997 @default.
- W4385649849 cites W2919115771 @default.
- W4385649849 cites W2921815890 @default.
- W4385649849 cites W2930816179 @default.
- W4385649849 cites W2938828179 @default.
- W4385649849 cites W2938868597 @default.
- W4385649849 cites W2942231644 @default.
- W4385649849 cites W2945976633 @default.
- W4385649849 cites W2949346354 @default.
- W4385649849 cites W2949724045 @default.
- W4385649849 cites W2949831026 @default.
- W4385649849 cites W2951160681 @default.
- W4385649849 cites W2951274106 @default.
- W4385649849 cites W2952342008 @default.
- W4385649849 cites W2952828589 @default.
- W4385649849 cites W2963613787 @default.
- W4385649849 cites W2963776453 @default.
- W4385649849 cites W2966795188 @default.
- W4385649849 cites W2981452580 @default.
- W4385649849 cites W2984353870 @default.
- W4385649849 cites W2991494381 @default.
- W4385649849 cites W3003110834 @default.
- W4385649849 cites W3005437930 @default.
- W4385649849 cites W3007172120 @default.
- W4385649849 cites W3007711184 @default.
- W4385649849 cites W3008594856 @default.
- W4385649849 cites W3009214133 @default.
- W4385649849 cites W3011335316 @default.
- W4385649849 cites W3011527816 @default.
- W4385649849 cites W3014810983 @default.
- W4385649849 cites W3023097186 @default.
- W4385649849 cites W3024389658 @default.
- W4385649849 cites W3024771599 @default.
- W4385649849 cites W3027189436 @default.
- W4385649849 cites W3028383715 @default.
- W4385649849 cites W3030441098 @default.
- W4385649849 cites W3038776457 @default.
- W4385649849 cites W3042305844 @default.
- W4385649849 cites W3096281419 @default.
- W4385649849 cites W3101106845 @default.
- W4385649849 cites W3105301756 @default.
- W4385649849 cites W3107067046 @default.
- W4385649849 cites W3110842668 @default.
- W4385649849 cites W3112517861 @default.
- W4385649849 cites W3112703609 @default.
- W4385649849 cites W3113238741 @default.
- W4385649849 cites W3118453352 @default.
- W4385649849 cites W3120084484 @default.
- W4385649849 cites W3120463026 @default.
- W4385649849 cites W3123225556 @default.
- W4385649849 cites W3128671916 @default.
- W4385649849 cites W3129102895 @default.
- W4385649849 cites W3135437286 @default.