Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385651837> ?p ?o ?g. }
- W4385651837 endingPage "104854" @default.
- W4385651837 startingPage "104854" @default.
- W4385651837 abstract "This paper puts forward a method of using two wavelengths of near-infrared light to identify the oil–gas-water mixed flow patterns. Propose a new method of multiple correlation algorithm (MCA) to solve the sensor super-sparse representation problem. Use MCA results as input layer parameters, use BP neural network to train the voltage signal and identify different flow patterns. The experimental results show that the recognition degrees of water, oil bubble, and oil flow patterns have reached 96.77%, 98.39%, and 100%, respectively, and the recognition rate of the water–gas phase has 78.38%. Using a correction model can further improve the accuracy. Test the samples with water cut from 90% to 70%, and the average RMSE = 1.59e-2. This method can be applied to the detection of the water cut of crude oil in oil fields and has a certain reference value for the wavelength selection of near-infrared light sensors." @default.
- W4385651837 created "2023-08-09" @default.
- W4385651837 creator A5000586148 @default.
- W4385651837 creator A5004003406 @default.
- W4385651837 creator A5005191544 @default.
- W4385651837 creator A5026097036 @default.
- W4385651837 creator A5027520009 @default.
- W4385651837 creator A5046403648 @default.
- W4385651837 creator A5046529412 @default.
- W4385651837 creator A5069311295 @default.
- W4385651837 date "2023-09-01" @default.
- W4385651837 modified "2023-10-15" @default.
- W4385651837 title "Identification of oil–water-gas flow patterns by super-sparse near-infrared wavelengths sensor" @default.
- W4385651837 cites W2001949973 @default.
- W4385651837 cites W2086055298 @default.
- W4385651837 cites W2090617095 @default.
- W4385651837 cites W2471004330 @default.
- W4385651837 cites W2473175187 @default.
- W4385651837 cites W2515085069 @default.
- W4385651837 cites W2810843848 @default.
- W4385651837 cites W2883669584 @default.
- W4385651837 cites W2955611551 @default.
- W4385651837 cites W2962649605 @default.
- W4385651837 cites W2964703402 @default.
- W4385651837 cites W2991680600 @default.
- W4385651837 cites W2996961835 @default.
- W4385651837 cites W3003514102 @default.
- W4385651837 cites W3008860549 @default.
- W4385651837 cites W3025908779 @default.
- W4385651837 cites W3031560483 @default.
- W4385651837 cites W3081223804 @default.
- W4385651837 cites W3104517146 @default.
- W4385651837 cites W3155640732 @default.
- W4385651837 cites W3176161536 @default.
- W4385651837 cites W3183028572 @default.
- W4385651837 cites W3197013680 @default.
- W4385651837 cites W3211205988 @default.
- W4385651837 cites W4226136678 @default.
- W4385651837 doi "https://doi.org/10.1016/j.infrared.2023.104854" @default.
- W4385651837 hasPublicationYear "2023" @default.
- W4385651837 type Work @default.
- W4385651837 citedByCount "0" @default.
- W4385651837 crossrefType "journal-article" @default.
- W4385651837 hasAuthorship W4385651837A5000586148 @default.
- W4385651837 hasAuthorship W4385651837A5004003406 @default.
- W4385651837 hasAuthorship W4385651837A5005191544 @default.
- W4385651837 hasAuthorship W4385651837A5026097036 @default.
- W4385651837 hasAuthorship W4385651837A5027520009 @default.
- W4385651837 hasAuthorship W4385651837A5046403648 @default.
- W4385651837 hasAuthorship W4385651837A5046529412 @default.
- W4385651837 hasAuthorship W4385651837A5069311295 @default.
- W4385651837 hasConcept C105795698 @default.
- W4385651837 hasConcept C120665830 @default.
- W4385651837 hasConcept C121332964 @default.
- W4385651837 hasConcept C139945424 @default.
- W4385651837 hasConcept C158355884 @default.
- W4385651837 hasConcept C172120300 @default.
- W4385651837 hasConcept C186060115 @default.
- W4385651837 hasConcept C192562407 @default.
- W4385651837 hasConcept C199360897 @default.
- W4385651837 hasConcept C24890656 @default.
- W4385651837 hasConcept C2779843651 @default.
- W4385651837 hasConcept C33923547 @default.
- W4385651837 hasConcept C38349280 @default.
- W4385651837 hasConcept C39432304 @default.
- W4385651837 hasConcept C41008148 @default.
- W4385651837 hasConcept C43571822 @default.
- W4385651837 hasConcept C49040817 @default.
- W4385651837 hasConcept C57879066 @default.
- W4385651837 hasConcept C6260449 @default.
- W4385651837 hasConcept C86803240 @default.
- W4385651837 hasConceptScore W4385651837C105795698 @default.
- W4385651837 hasConceptScore W4385651837C120665830 @default.
- W4385651837 hasConceptScore W4385651837C121332964 @default.
- W4385651837 hasConceptScore W4385651837C139945424 @default.
- W4385651837 hasConceptScore W4385651837C158355884 @default.
- W4385651837 hasConceptScore W4385651837C172120300 @default.
- W4385651837 hasConceptScore W4385651837C186060115 @default.
- W4385651837 hasConceptScore W4385651837C192562407 @default.
- W4385651837 hasConceptScore W4385651837C199360897 @default.
- W4385651837 hasConceptScore W4385651837C24890656 @default.
- W4385651837 hasConceptScore W4385651837C2779843651 @default.
- W4385651837 hasConceptScore W4385651837C33923547 @default.
- W4385651837 hasConceptScore W4385651837C38349280 @default.
- W4385651837 hasConceptScore W4385651837C39432304 @default.
- W4385651837 hasConceptScore W4385651837C41008148 @default.
- W4385651837 hasConceptScore W4385651837C43571822 @default.
- W4385651837 hasConceptScore W4385651837C49040817 @default.
- W4385651837 hasConceptScore W4385651837C57879066 @default.
- W4385651837 hasConceptScore W4385651837C6260449 @default.
- W4385651837 hasConceptScore W4385651837C86803240 @default.
- W4385651837 hasLocation W43856518371 @default.
- W4385651837 hasOpenAccess W4385651837 @default.
- W4385651837 hasPrimaryLocation W43856518371 @default.
- W4385651837 hasRelatedWork W2102148524 @default.
- W4385651837 hasRelatedWork W2314720829 @default.
- W4385651837 hasRelatedWork W2362091980 @default.
- W4385651837 hasRelatedWork W2365737984 @default.