Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385652015> ?p ?o ?g. }
- W4385652015 endingPage "112411" @default.
- W4385652015 startingPage "112411" @default.
- W4385652015 abstract "We develop a numerical method to study eigenvalue problems for operators fundamental to Stokes wave and its stability in a 2D ideal fluid with a free surface and infinite depth. The method allows to determine the spectrum of the linearization operator of the quasiperiodic Babenko equation. We illustrate by providing new results for eigenvalues and eigenvectors near the limiting Stokes wave and identify new bifurcation point to double-period waves. An infinite number of such points is conjectured as the limiting Stokes wave is approached. The eigenvalue problem for stability is also considered. The method in [1] is extended to allow finding of quasiperiodic eigenfunctions by introducing the Fourier-Floquet-Hill (FFH) approach in canonical conformal variables. Our findings agree and extend existing results for the Benjamin-Feir, high-frequency and localized instabilities, see also Refs. [2]. The numerical method is matrix-free and is based on Krylov subspaces. All operators appearing in the problems are pseudospectral and employ the fast Fourier transform (FFT), thus enjoying the benefits of spectral accuracy and O(NlogN) numerical complexity." @default.
- W4385652015 created "2023-08-09" @default.
- W4385652015 creator A5021558071 @default.
- W4385652015 creator A5052782905 @default.
- W4385652015 date "2023-11-01" @default.
- W4385652015 modified "2023-10-12" @default.
- W4385652015 title "Quasiperiodic perturbations of Stokes waves: Secondary bifurcations and stability" @default.
- W4385652015 cites W1964624696 @default.
- W4385652015 cites W1968024813 @default.
- W4385652015 cites W1968466640 @default.
- W4385652015 cites W1968868980 @default.
- W4385652015 cites W1969228882 @default.
- W4385652015 cites W1972274656 @default.
- W4385652015 cites W1973017819 @default.
- W4385652015 cites W1975541549 @default.
- W4385652015 cites W1975562671 @default.
- W4385652015 cites W1979658223 @default.
- W4385652015 cites W1988800277 @default.
- W4385652015 cites W1990077491 @default.
- W4385652015 cites W1992398314 @default.
- W4385652015 cites W2004508559 @default.
- W4385652015 cites W2006551339 @default.
- W4385652015 cites W2013147818 @default.
- W4385652015 cites W2013864244 @default.
- W4385652015 cites W2014347999 @default.
- W4385652015 cites W2017635024 @default.
- W4385652015 cites W2027947592 @default.
- W4385652015 cites W2048030325 @default.
- W4385652015 cites W2051842180 @default.
- W4385652015 cites W205545407 @default.
- W4385652015 cites W2058923961 @default.
- W4385652015 cites W2071905930 @default.
- W4385652015 cites W2073955633 @default.
- W4385652015 cites W2090885565 @default.
- W4385652015 cites W2102010250 @default.
- W4385652015 cites W2102182691 @default.
- W4385652015 cites W2138449846 @default.
- W4385652015 cites W2141237926 @default.
- W4385652015 cites W2151101148 @default.
- W4385652015 cites W2156958486 @default.
- W4385652015 cites W2594899512 @default.
- W4385652015 cites W3000365771 @default.
- W4385652015 cites W3010623464 @default.
- W4385652015 cites W3040744078 @default.
- W4385652015 cites W3099909531 @default.
- W4385652015 cites W3103037922 @default.
- W4385652015 cites W3103045676 @default.
- W4385652015 cites W3203089323 @default.
- W4385652015 cites W4214724636 @default.
- W4385652015 cites W4236654307 @default.
- W4385652015 cites W4303646533 @default.
- W4385652015 cites W4313249908 @default.
- W4385652015 cites W4315767366 @default.
- W4385652015 cites W4319596399 @default.
- W4385652015 cites W4320526400 @default.
- W4385652015 cites W4385409671 @default.
- W4385652015 doi "https://doi.org/10.1016/j.jcp.2023.112411" @default.
- W4385652015 hasPublicationYear "2023" @default.
- W4385652015 type Work @default.
- W4385652015 citedByCount "0" @default.
- W4385652015 crossrefType "journal-article" @default.
- W4385652015 hasAuthorship W4385652015A5021558071 @default.
- W4385652015 hasAuthorship W4385652015A5052782905 @default.
- W4385652015 hasBestOaLocation W43856520152 @default.
- W4385652015 hasConcept C102519508 @default.
- W4385652015 hasConcept C11210021 @default.
- W4385652015 hasConcept C112972136 @default.
- W4385652015 hasConcept C11413529 @default.
- W4385652015 hasConcept C119857082 @default.
- W4385652015 hasConcept C121332964 @default.
- W4385652015 hasConcept C128803854 @default.
- W4385652015 hasConcept C134306372 @default.
- W4385652015 hasConcept C156778621 @default.
- W4385652015 hasConcept C158622935 @default.
- W4385652015 hasConcept C158693339 @default.
- W4385652015 hasConcept C177937620 @default.
- W4385652015 hasConcept C203024314 @default.
- W4385652015 hasConcept C33923547 @default.
- W4385652015 hasConcept C41008148 @default.
- W4385652015 hasConcept C55637507 @default.
- W4385652015 hasConcept C55649039 @default.
- W4385652015 hasConcept C62520636 @default.
- W4385652015 hasConcept C74650414 @default.
- W4385652015 hasConcept C75172450 @default.
- W4385652015 hasConceptScore W4385652015C102519508 @default.
- W4385652015 hasConceptScore W4385652015C11210021 @default.
- W4385652015 hasConceptScore W4385652015C112972136 @default.
- W4385652015 hasConceptScore W4385652015C11413529 @default.
- W4385652015 hasConceptScore W4385652015C119857082 @default.
- W4385652015 hasConceptScore W4385652015C121332964 @default.
- W4385652015 hasConceptScore W4385652015C128803854 @default.
- W4385652015 hasConceptScore W4385652015C134306372 @default.
- W4385652015 hasConceptScore W4385652015C156778621 @default.
- W4385652015 hasConceptScore W4385652015C158622935 @default.
- W4385652015 hasConceptScore W4385652015C158693339 @default.
- W4385652015 hasConceptScore W4385652015C177937620 @default.
- W4385652015 hasConceptScore W4385652015C203024314 @default.
- W4385652015 hasConceptScore W4385652015C33923547 @default.