Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385652189> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4385652189 endingPage "178" @default.
- W4385652189 startingPage "155" @default.
- W4385652189 abstract "A Jordan curve in $mathbb C$ is called a quasicircle if it is an image of the unit circle by a quasiconformal self-mapping of $mathbb C$. Quasicircles are characterized by an extendability condition on Dirichlet finite harmonic functions. In this chapter, we improve and generalize the condition for Jordan curves to be quasicircles on Riemann surfaces. Also, our results are generalizations of a theorem by Schippers and Staubach (2020), which shows the extendability property for a Jordan curve on a compact Riemann surface." @default.
- W4385652189 created "2023-08-09" @default.
- W4385652189 creator A5046164005 @default.
- W4385652189 date "2023-08-08" @default.
- W4385652189 modified "2023-09-25" @default.
- W4385652189 title "Quasicircles and Dirichlet finite harmonic functions on Riemann surfaces" @default.
- W4385652189 doi "https://doi.org/10.4171/irma/34/11" @default.
- W4385652189 hasPublicationYear "2023" @default.
- W4385652189 type Work @default.
- W4385652189 citedByCount "0" @default.
- W4385652189 crossrefType "book-chapter" @default.
- W4385652189 hasAuthorship W4385652189A5046164005 @default.
- W4385652189 hasConcept C112468886 @default.
- W4385652189 hasConcept C121332964 @default.
- W4385652189 hasConcept C127934551 @default.
- W4385652189 hasConcept C131356121 @default.
- W4385652189 hasConcept C134306372 @default.
- W4385652189 hasConcept C169214877 @default.
- W4385652189 hasConcept C182310444 @default.
- W4385652189 hasConcept C18556879 @default.
- W4385652189 hasConcept C199479865 @default.
- W4385652189 hasConcept C202444582 @default.
- W4385652189 hasConcept C26020477 @default.
- W4385652189 hasConcept C33923547 @default.
- W4385652189 hasConcept C62520636 @default.
- W4385652189 hasConcept C627467 @default.
- W4385652189 hasConceptScore W4385652189C112468886 @default.
- W4385652189 hasConceptScore W4385652189C121332964 @default.
- W4385652189 hasConceptScore W4385652189C127934551 @default.
- W4385652189 hasConceptScore W4385652189C131356121 @default.
- W4385652189 hasConceptScore W4385652189C134306372 @default.
- W4385652189 hasConceptScore W4385652189C169214877 @default.
- W4385652189 hasConceptScore W4385652189C182310444 @default.
- W4385652189 hasConceptScore W4385652189C18556879 @default.
- W4385652189 hasConceptScore W4385652189C199479865 @default.
- W4385652189 hasConceptScore W4385652189C202444582 @default.
- W4385652189 hasConceptScore W4385652189C26020477 @default.
- W4385652189 hasConceptScore W4385652189C33923547 @default.
- W4385652189 hasConceptScore W4385652189C62520636 @default.
- W4385652189 hasConceptScore W4385652189C627467 @default.
- W4385652189 hasLocation W43856521891 @default.
- W4385652189 hasOpenAccess W4385652189 @default.
- W4385652189 hasPrimaryLocation W43856521891 @default.
- W4385652189 hasRelatedWork W1974228976 @default.
- W4385652189 hasRelatedWork W2523393916 @default.
- W4385652189 hasRelatedWork W41994924 @default.
- W4385652189 hasRelatedWork W4234967156 @default.
- W4385652189 hasRelatedWork W4241383310 @default.
- W4385652189 hasRelatedWork W4250284534 @default.
- W4385652189 hasRelatedWork W4251905010 @default.
- W4385652189 hasRelatedWork W4307079150 @default.
- W4385652189 hasRelatedWork W4385652189 @default.
- W4385652189 hasRelatedWork W67350891 @default.
- W4385652189 isParatext "false" @default.
- W4385652189 isRetracted "false" @default.
- W4385652189 workType "book-chapter" @default.