Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385652249> ?p ?o ?g. }
- W4385652249 endingPage "121076" @default.
- W4385652249 startingPage "121076" @default.
- W4385652249 abstract "To improve the fault diagnosis performance of rotating machinery under harsh conditions, a weighted average selective ensemble strategy of deep convolutional models based on the grey wolf optimizer (GWO) is proposed. Firstly, two datasets in the time domain, two in the frequency domain, and one in the time-frequency domain are respectively constructed to guarantee the diversity and comprehensiveness of input expression. Secondly, two deeper Resnet18 models, which are sensitive to the comprehensive and abstract features, and two relatively shallow CNN models, which focus on the details more, are built. Thus, the fault differential features are diverse. Moreover, the improved convolutional block attention module (CBAM) is used to enhance the diagnosis performance. Then, a total of ten individual models are trained. Thirdly, F1 Score is used to evaluate the diagnostic performance of each individual model on different faults, and the fault class-specific thresholds are set. For each fault, individual models with F1 Score lower than the corresponding thresholds are regarded as negative and need to be discarded. Especially, the fault class-specific thresholds are optimized by GWO. Finally, the weighted average selectively ensemble strategy is implemented based on the threshold-treated weights. Experiment results indicate that the proposed ensemble model significantly improves the diagnostic accuracy and stability of the individual models, which is also verified by other compared ensemble strategies and ensemble models." @default.
- W4385652249 created "2023-08-09" @default.
- W4385652249 creator A5011372912 @default.
- W4385652249 creator A5019055145 @default.
- W4385652249 creator A5025124998 @default.
- W4385652249 creator A5054800338 @default.
- W4385652249 creator A5056646905 @default.
- W4385652249 creator A5064050982 @default.
- W4385652249 date "2023-12-01" @default.
- W4385652249 modified "2023-10-12" @default.
- W4385652249 title "Weighted average selective ensemble strategy of deep convolutional models based on grey wolf optimizer and its application in rotating machinery fault diagnosis" @default.
- W4385652249 cites W1985716425 @default.
- W4385652249 cites W2061438946 @default.
- W4385652249 cites W2089997590 @default.
- W4385652249 cites W2317595875 @default.
- W4385652249 cites W2605438564 @default.
- W4385652249 cites W2735326783 @default.
- W4385652249 cites W2765226309 @default.
- W4385652249 cites W2767031373 @default.
- W4385652249 cites W2769028873 @default.
- W4385652249 cites W2884212008 @default.
- W4385652249 cites W2884585870 @default.
- W4385652249 cites W2885784805 @default.
- W4385652249 cites W2887782657 @default.
- W4385652249 cites W2893275166 @default.
- W4385652249 cites W2905386532 @default.
- W4385652249 cites W2921168912 @default.
- W4385652249 cites W2962716005 @default.
- W4385652249 cites W2986996311 @default.
- W4385652249 cites W2996117967 @default.
- W4385652249 cites W2998506103 @default.
- W4385652249 cites W3009370740 @default.
- W4385652249 cites W3009747427 @default.
- W4385652249 cites W3108351918 @default.
- W4385652249 cites W3113310630 @default.
- W4385652249 cites W3133540327 @default.
- W4385652249 cites W3167434454 @default.
- W4385652249 cites W3190646162 @default.
- W4385652249 cites W3197290064 @default.
- W4385652249 cites W3201115733 @default.
- W4385652249 cites W3202146146 @default.
- W4385652249 cites W3205301901 @default.
- W4385652249 cites W3205788673 @default.
- W4385652249 cites W3213473583 @default.
- W4385652249 cites W3214354909 @default.
- W4385652249 cites W4200123685 @default.
- W4385652249 cites W4205244318 @default.
- W4385652249 cites W4220887033 @default.
- W4385652249 cites W4224044508 @default.
- W4385652249 cites W4225919356 @default.
- W4385652249 cites W4229502812 @default.
- W4385652249 cites W4281749336 @default.
- W4385652249 cites W4283715292 @default.
- W4385652249 cites W4288058759 @default.
- W4385652249 cites W4289705411 @default.
- W4385652249 cites W4293331938 @default.
- W4385652249 cites W4303453665 @default.
- W4385652249 cites W4304471899 @default.
- W4385652249 doi "https://doi.org/10.1016/j.eswa.2023.121076" @default.
- W4385652249 hasPublicationYear "2023" @default.
- W4385652249 type Work @default.
- W4385652249 citedByCount "0" @default.
- W4385652249 crossrefType "journal-article" @default.
- W4385652249 hasAuthorship W4385652249A5011372912 @default.
- W4385652249 hasAuthorship W4385652249A5019055145 @default.
- W4385652249 hasAuthorship W4385652249A5025124998 @default.
- W4385652249 hasAuthorship W4385652249A5054800338 @default.
- W4385652249 hasAuthorship W4385652249A5056646905 @default.
- W4385652249 hasAuthorship W4385652249A5064050982 @default.
- W4385652249 hasConcept C112972136 @default.
- W4385652249 hasConcept C11413529 @default.
- W4385652249 hasConcept C119857082 @default.
- W4385652249 hasConcept C119898033 @default.
- W4385652249 hasConcept C124101348 @default.
- W4385652249 hasConcept C127313418 @default.
- W4385652249 hasConcept C134306372 @default.
- W4385652249 hasConcept C153180895 @default.
- W4385652249 hasConcept C154945302 @default.
- W4385652249 hasConcept C165205528 @default.
- W4385652249 hasConcept C175551986 @default.
- W4385652249 hasConcept C177264268 @default.
- W4385652249 hasConcept C199360897 @default.
- W4385652249 hasConcept C2524010 @default.
- W4385652249 hasConcept C2777210771 @default.
- W4385652249 hasConcept C33923547 @default.
- W4385652249 hasConcept C36503486 @default.
- W4385652249 hasConcept C41008148 @default.
- W4385652249 hasConcept C45942800 @default.
- W4385652249 hasConceptScore W4385652249C112972136 @default.
- W4385652249 hasConceptScore W4385652249C11413529 @default.
- W4385652249 hasConceptScore W4385652249C119857082 @default.
- W4385652249 hasConceptScore W4385652249C119898033 @default.
- W4385652249 hasConceptScore W4385652249C124101348 @default.
- W4385652249 hasConceptScore W4385652249C127313418 @default.
- W4385652249 hasConceptScore W4385652249C134306372 @default.
- W4385652249 hasConceptScore W4385652249C153180895 @default.
- W4385652249 hasConceptScore W4385652249C154945302 @default.
- W4385652249 hasConceptScore W4385652249C165205528 @default.