Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385652601> ?p ?o ?g. }
- W4385652601 abstract "Abstract Efficient and accurate evaluation of capillary pressure and relative permeability of oil–water flow in tight sandstone with limited routinely obtainable parameters is a crucial problem in tight oil reservoir modeling and petroleum engineering. Due to the multiscale pore structure, there is complex nonlinear multiphase flow in tight sandstone. Additionally, wetting behavior caused by mineral components remarkably influences oil–water displacement in multiscale pores. All this makes predicting capillary pressure and relative permeability in tight sandstone extremely difficult. This paper proposes a physics-informed neural network, integrating five important physical models, the improved parallel genetic algorithm (PGA), and the neural network to simulate the two-phase capillary pressure and relative permeability of tight sandstone. To describe the nonlinear multiphase flow and the wettability behavior, five physical models, including the non-Darcy liquid flow rate formula, apparent permeability (AP) formula, and contact angle-capillary pressure relationship, are coupled into the neural network to improve the prediction accuracy. In addition, the input parameters and the structure of the physics-informed neural network are simplified based on analyzing the change rule of the oil–water flow with the main controlling factors, which can also save training time and improve the accuracy of the neural network. To obtain the data for training the coupled neural network, the dataset of tight sandstone in Ordos Basin is constructed with experimentally measured data and various fluid flow properties as constraints. The test results demonstrate that the estimated capillary pressure and relative permeability from the physics-informed neural network are in good agreement with the test ones. Finally, we have compared the physics-informed neural network with the quasi-static pore network model (QSPNM), dynamic pore network model (DPNM), and conventional artificial neural network (ANN). The calculation time of QSPNM and DPNM are hundreds of times longer than that of the physics-informed neural network. The coupled neural network has also performed much better than the conventional ANN. As the heterogeneity of pore spaces in tight sandstone increases, the advantages of the physics-informed neural network over ANN are more prominent. The prediction models generated in this study can estimate the capillary pressure and relative permeability based on only four routine parameters in a few seconds. Therefore, the physics-informed neural network in this paper can provide the potential parameters for large-scale reservoir simulation." @default.
- W4385652601 created "2023-08-09" @default.
- W4385652601 creator A5011413537 @default.
- W4385652601 creator A5027427930 @default.
- W4385652601 creator A5029369387 @default.
- W4385652601 creator A5041387859 @default.
- W4385652601 creator A5042181122 @default.
- W4385652601 creator A5065162054 @default.
- W4385652601 creator A5073349777 @default.
- W4385652601 date "2023-08-09" @default.
- W4385652601 modified "2023-10-16" @default.
- W4385652601 title "Rapid evaluation of capillary pressure and relative permeability for oil–water flow in tight sandstone based on a physics-informed neural network" @default.
- W4385652601 cites W1565345130 @default.
- W4385652601 cites W1637481809 @default.
- W4385652601 cites W1999015847 @default.
- W4385652601 cites W2005634505 @default.
- W4385652601 cites W2021949237 @default.
- W4385652601 cites W2023526834 @default.
- W4385652601 cites W2031409368 @default.
- W4385652601 cites W2038615179 @default.
- W4385652601 cites W2044118236 @default.
- W4385652601 cites W2054950515 @default.
- W4385652601 cites W2064708863 @default.
- W4385652601 cites W2082702914 @default.
- W4385652601 cites W2101028159 @default.
- W4385652601 cites W2129489588 @default.
- W4385652601 cites W2133039442 @default.
- W4385652601 cites W2320062309 @default.
- W4385652601 cites W2344578028 @default.
- W4385652601 cites W2409686642 @default.
- W4385652601 cites W2564427355 @default.
- W4385652601 cites W2748103584 @default.
- W4385652601 cites W2798259146 @default.
- W4385652601 cites W2901279841 @default.
- W4385652601 cites W2947337964 @default.
- W4385652601 cites W3020934407 @default.
- W4385652601 cites W3026573064 @default.
- W4385652601 cites W3048047970 @default.
- W4385652601 cites W3107317270 @default.
- W4385652601 cites W3162359541 @default.
- W4385652601 cites W3205706429 @default.
- W4385652601 cites W3216772157 @default.
- W4385652601 cites W4200227220 @default.
- W4385652601 cites W4205531388 @default.
- W4385652601 cites W4223995986 @default.
- W4385652601 cites W4311589966 @default.
- W4385652601 doi "https://doi.org/10.1007/s13202-023-01682-7" @default.
- W4385652601 hasPublicationYear "2023" @default.
- W4385652601 type Work @default.
- W4385652601 citedByCount "0" @default.
- W4385652601 crossrefType "journal-article" @default.
- W4385652601 hasAuthorship W4385652601A5011413537 @default.
- W4385652601 hasAuthorship W4385652601A5027427930 @default.
- W4385652601 hasAuthorship W4385652601A5029369387 @default.
- W4385652601 hasAuthorship W4385652601A5041387859 @default.
- W4385652601 hasAuthorship W4385652601A5042181122 @default.
- W4385652601 hasAuthorship W4385652601A5065162054 @default.
- W4385652601 hasAuthorship W4385652601A5073349777 @default.
- W4385652601 hasBestOaLocation W43856526011 @default.
- W4385652601 hasConcept C105569014 @default.
- W4385652601 hasConcept C113378726 @default.
- W4385652601 hasConcept C120882062 @default.
- W4385652601 hasConcept C121332964 @default.
- W4385652601 hasConcept C127313418 @default.
- W4385652601 hasConcept C134514944 @default.
- W4385652601 hasConcept C154945302 @default.
- W4385652601 hasConcept C158622935 @default.
- W4385652601 hasConcept C159985019 @default.
- W4385652601 hasConcept C185592680 @default.
- W4385652601 hasConcept C187320778 @default.
- W4385652601 hasConcept C192562407 @default.
- W4385652601 hasConcept C196806460 @default.
- W4385652601 hasConcept C2779379648 @default.
- W4385652601 hasConcept C28413391 @default.
- W4385652601 hasConcept C41008148 @default.
- W4385652601 hasConcept C41625074 @default.
- W4385652601 hasConcept C48797263 @default.
- W4385652601 hasConcept C50644808 @default.
- W4385652601 hasConcept C55493867 @default.
- W4385652601 hasConcept C57879066 @default.
- W4385652601 hasConcept C62520636 @default.
- W4385652601 hasConcept C6648577 @default.
- W4385652601 hasConcept C78762247 @default.
- W4385652601 hasConcept C90278072 @default.
- W4385652601 hasConceptScore W4385652601C105569014 @default.
- W4385652601 hasConceptScore W4385652601C113378726 @default.
- W4385652601 hasConceptScore W4385652601C120882062 @default.
- W4385652601 hasConceptScore W4385652601C121332964 @default.
- W4385652601 hasConceptScore W4385652601C127313418 @default.
- W4385652601 hasConceptScore W4385652601C134514944 @default.
- W4385652601 hasConceptScore W4385652601C154945302 @default.
- W4385652601 hasConceptScore W4385652601C158622935 @default.
- W4385652601 hasConceptScore W4385652601C159985019 @default.
- W4385652601 hasConceptScore W4385652601C185592680 @default.
- W4385652601 hasConceptScore W4385652601C187320778 @default.
- W4385652601 hasConceptScore W4385652601C192562407 @default.
- W4385652601 hasConceptScore W4385652601C196806460 @default.
- W4385652601 hasConceptScore W4385652601C2779379648 @default.
- W4385652601 hasConceptScore W4385652601C28413391 @default.
- W4385652601 hasConceptScore W4385652601C41008148 @default.