Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385654345> ?p ?o ?g. }
- W4385654345 endingPage "93" @default.
- W4385654345 startingPage "78" @default.
- W4385654345 abstract "Text classification, a fundamental task in natural language processing, has been extensively studied by researchers worldwide. The primary focus of text classification is on extracting effective features from text, as accurate information extraction is crucial for the task. However, the current utilization of text information in text classification is not optimal, and thus, effective extraction of text information remains an important research topic. Graph attention networks (GATs) have gained popularity among researchers due to their excellent performance in various tasks, including text classification. Additionally, previous graph neural network-derived models only address the differences in importance of edges within nodes during the information aggregation process, but ignore the importance differences between different nodes. But, the correlation between nodes also needs to be exploited for a more comprehensive understanding of the text. In this paper, we propose a novel multi-display graph attention network (MDGAT)-based model to address the challenges of inadequate text information capture and higher-order interactions between words. Our approach involves fusing multiple display graphs to capture diverse features of the text, for comprehensive text information representation. Additionally, we introduce a new information aggregation method called multi-step information aggregation, which considers the importance within nodes and the correlation between nodes, leading to improved text representation learning. We validate the performance of our proposed method through extensive experiments on various benchmark datasets. The results demonstrate the superior performance of our approach in text classification tasks." @default.
- W4385654345 created "2023-08-09" @default.
- W4385654345 creator A5015032032 @default.
- W4385654345 creator A5019376106 @default.
- W4385654345 creator A5041763772 @default.
- W4385654345 creator A5064413361 @default.
- W4385654345 creator A5068884216 @default.
- W4385654345 date "2023-01-01" @default.
- W4385654345 modified "2023-10-16" @default.
- W4385654345 title "Multi-display Graph Attention Network for Text Classification" @default.
- W4385654345 cites W1832693441 @default.
- W4385654345 cites W2157331557 @default.
- W4385654345 cites W2251869843 @default.
- W4385654345 cites W2788667846 @default.
- W4385654345 cites W2892880750 @default.
- W4385654345 cites W2962946486 @default.
- W4385654345 cites W2963355447 @default.
- W4385654345 cites W2963626623 @default.
- W4385654345 cites W2964301648 @default.
- W4385654345 cites W2970183009 @default.
- W4385654345 cites W2970748008 @default.
- W4385654345 cites W2997162759 @default.
- W4385654345 cites W3035740499 @default.
- W4385654345 cites W3085990079 @default.
- W4385654345 cites W3106229813 @default.
- W4385654345 cites W3117136530 @default.
- W4385654345 cites W3152893301 @default.
- W4385654345 cites W3156333129 @default.
- W4385654345 cites W3173753074 @default.
- W4385654345 cites W3213938648 @default.
- W4385654345 cites W4210257598 @default.
- W4385654345 cites W4287854714 @default.
- W4385654345 doi "https://doi.org/10.1007/978-3-031-40289-0_7" @default.
- W4385654345 hasPublicationYear "2023" @default.
- W4385654345 type Work @default.
- W4385654345 citedByCount "0" @default.
- W4385654345 crossrefType "book-chapter" @default.
- W4385654345 hasAuthorship W4385654345A5015032032 @default.
- W4385654345 hasAuthorship W4385654345A5019376106 @default.
- W4385654345 hasAuthorship W4385654345A5041763772 @default.
- W4385654345 hasAuthorship W4385654345A5064413361 @default.
- W4385654345 hasAuthorship W4385654345A5068884216 @default.
- W4385654345 hasConcept C119857082 @default.
- W4385654345 hasConcept C124101348 @default.
- W4385654345 hasConcept C132525143 @default.
- W4385654345 hasConcept C13280743 @default.
- W4385654345 hasConcept C154945302 @default.
- W4385654345 hasConcept C15744967 @default.
- W4385654345 hasConcept C162324750 @default.
- W4385654345 hasConcept C17744445 @default.
- W4385654345 hasConcept C185798385 @default.
- W4385654345 hasConcept C187736073 @default.
- W4385654345 hasConcept C195807954 @default.
- W4385654345 hasConcept C199539241 @default.
- W4385654345 hasConcept C204321447 @default.
- W4385654345 hasConcept C205649164 @default.
- W4385654345 hasConcept C23123220 @default.
- W4385654345 hasConcept C2776359362 @default.
- W4385654345 hasConcept C2779500292 @default.
- W4385654345 hasConcept C2780451532 @default.
- W4385654345 hasConcept C2780586970 @default.
- W4385654345 hasConcept C2993807640 @default.
- W4385654345 hasConcept C41008148 @default.
- W4385654345 hasConcept C66945725 @default.
- W4385654345 hasConcept C71472368 @default.
- W4385654345 hasConcept C77805123 @default.
- W4385654345 hasConcept C80444323 @default.
- W4385654345 hasConcept C94625758 @default.
- W4385654345 hasConceptScore W4385654345C119857082 @default.
- W4385654345 hasConceptScore W4385654345C124101348 @default.
- W4385654345 hasConceptScore W4385654345C132525143 @default.
- W4385654345 hasConceptScore W4385654345C13280743 @default.
- W4385654345 hasConceptScore W4385654345C154945302 @default.
- W4385654345 hasConceptScore W4385654345C15744967 @default.
- W4385654345 hasConceptScore W4385654345C162324750 @default.
- W4385654345 hasConceptScore W4385654345C17744445 @default.
- W4385654345 hasConceptScore W4385654345C185798385 @default.
- W4385654345 hasConceptScore W4385654345C187736073 @default.
- W4385654345 hasConceptScore W4385654345C195807954 @default.
- W4385654345 hasConceptScore W4385654345C199539241 @default.
- W4385654345 hasConceptScore W4385654345C204321447 @default.
- W4385654345 hasConceptScore W4385654345C205649164 @default.
- W4385654345 hasConceptScore W4385654345C23123220 @default.
- W4385654345 hasConceptScore W4385654345C2776359362 @default.
- W4385654345 hasConceptScore W4385654345C2779500292 @default.
- W4385654345 hasConceptScore W4385654345C2780451532 @default.
- W4385654345 hasConceptScore W4385654345C2780586970 @default.
- W4385654345 hasConceptScore W4385654345C2993807640 @default.
- W4385654345 hasConceptScore W4385654345C41008148 @default.
- W4385654345 hasConceptScore W4385654345C66945725 @default.
- W4385654345 hasConceptScore W4385654345C71472368 @default.
- W4385654345 hasConceptScore W4385654345C77805123 @default.
- W4385654345 hasConceptScore W4385654345C80444323 @default.
- W4385654345 hasConceptScore W4385654345C94625758 @default.
- W4385654345 hasLocation W43856543451 @default.
- W4385654345 hasOpenAccess W4385654345 @default.
- W4385654345 hasPrimaryLocation W43856543451 @default.
- W4385654345 hasRelatedWork W103659291 @default.