Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385654506> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4385654506 endingPage "382" @default.
- W4385654506 startingPage "368" @default.
- W4385654506 abstract "Nested named entity recognition and relation extraction are two crucial tasks in information extraction. Traditional systems often treat them as separate, sequential tasks, which can lead to error propagation. To mitigate this issue, we present a joint extraction model for nested named entities and relations based on a two-level structure, which facilitates joint learning of these subtasks through parameter sharing. Initially, we employ a hierarchical network to identify nested entities. Then, to extract relationships between the nested entities identified at different layers, we introduce multiple rounds of hierarchical relation extraction, creating a dual-dynamic hierarchical network structure. Moreover, as there is a current lack of suitable tagging schemes, we propose a novel tagging scheme grounded in a hierarchical structure. Utilizing this approach, we relabel three datasets: Genia, KBP, and NYT. Experimental results indicate that our proposed joint extraction model significantly outperforms traditional methods in both tasks." @default.
- W4385654506 created "2023-08-09" @default.
- W4385654506 creator A5030651867 @default.
- W4385654506 creator A5031875407 @default.
- W4385654506 creator A5052253143 @default.
- W4385654506 date "2023-01-01" @default.
- W4385654506 modified "2023-10-14" @default.
- W4385654506 title "Joint Extraction of Nested Entities and Relations Based on Multi-task Learning" @default.
- W4385654506 cites W1899784274 @default.
- W4385654506 cites W2134033474 @default.
- W4385654506 cites W2139865360 @default.
- W4385654506 cites W2251091211 @default.
- W4385654506 cites W2513378248 @default.
- W4385654506 cites W2587809655 @default.
- W4385654506 cites W2604610161 @default.
- W4385654506 cites W2759056771 @default.
- W4385654506 cites W2804221886 @default.
- W4385654506 cites W2808142148 @default.
- W4385654506 cites W2891570996 @default.
- W4385654506 cites W2892252202 @default.
- W4385654506 cites W2905462022 @default.
- W4385654506 cites W2949212908 @default.
- W4385654506 cites W2963625095 @default.
- W4385654506 cites W2964167098 @default.
- W4385654506 cites W2964273534 @default.
- W4385654506 cites W2997876626 @default.
- W4385654506 cites W3034744126 @default.
- W4385654506 cites W3035543689 @default.
- W4385654506 cites W3035625205 @default.
- W4385654506 cites W3173892794 @default.
- W4385654506 cites W3174244822 @default.
- W4385654506 cites W3176680950 @default.
- W4385654506 doi "https://doi.org/10.1007/978-3-031-40286-9_30" @default.
- W4385654506 hasPublicationYear "2023" @default.
- W4385654506 type Work @default.
- W4385654506 citedByCount "0" @default.
- W4385654506 crossrefType "book-chapter" @default.
- W4385654506 hasAuthorship W4385654506A5030651867 @default.
- W4385654506 hasAuthorship W4385654506A5031875407 @default.
- W4385654506 hasAuthorship W4385654506A5052253143 @default.
- W4385654506 hasConcept C103000020 @default.
- W4385654506 hasConcept C119857082 @default.
- W4385654506 hasConcept C124101348 @default.
- W4385654506 hasConcept C127413603 @default.
- W4385654506 hasConcept C134306372 @default.
- W4385654506 hasConcept C144986985 @default.
- W4385654506 hasConcept C153180895 @default.
- W4385654506 hasConcept C153604712 @default.
- W4385654506 hasConcept C154945302 @default.
- W4385654506 hasConcept C162324750 @default.
- W4385654506 hasConcept C170154142 @default.
- W4385654506 hasConcept C18555067 @default.
- W4385654506 hasConcept C187736073 @default.
- W4385654506 hasConcept C25343380 @default.
- W4385654506 hasConcept C2780451532 @default.
- W4385654506 hasConcept C33923547 @default.
- W4385654506 hasConcept C41008148 @default.
- W4385654506 hasConcept C5655090 @default.
- W4385654506 hasConcept C77618280 @default.
- W4385654506 hasConceptScore W4385654506C103000020 @default.
- W4385654506 hasConceptScore W4385654506C119857082 @default.
- W4385654506 hasConceptScore W4385654506C124101348 @default.
- W4385654506 hasConceptScore W4385654506C127413603 @default.
- W4385654506 hasConceptScore W4385654506C134306372 @default.
- W4385654506 hasConceptScore W4385654506C144986985 @default.
- W4385654506 hasConceptScore W4385654506C153180895 @default.
- W4385654506 hasConceptScore W4385654506C153604712 @default.
- W4385654506 hasConceptScore W4385654506C154945302 @default.
- W4385654506 hasConceptScore W4385654506C162324750 @default.
- W4385654506 hasConceptScore W4385654506C170154142 @default.
- W4385654506 hasConceptScore W4385654506C18555067 @default.
- W4385654506 hasConceptScore W4385654506C187736073 @default.
- W4385654506 hasConceptScore W4385654506C25343380 @default.
- W4385654506 hasConceptScore W4385654506C2780451532 @default.
- W4385654506 hasConceptScore W4385654506C33923547 @default.
- W4385654506 hasConceptScore W4385654506C41008148 @default.
- W4385654506 hasConceptScore W4385654506C5655090 @default.
- W4385654506 hasConceptScore W4385654506C77618280 @default.
- W4385654506 hasLocation W43856545061 @default.
- W4385654506 hasOpenAccess W4385654506 @default.
- W4385654506 hasPrimaryLocation W43856545061 @default.
- W4385654506 hasRelatedWork W2605526599 @default.
- W4385654506 hasRelatedWork W2753023842 @default.
- W4385654506 hasRelatedWork W2807524541 @default.
- W4385654506 hasRelatedWork W2808142148 @default.
- W4385654506 hasRelatedWork W2888033806 @default.
- W4385654506 hasRelatedWork W2892316911 @default.
- W4385654506 hasRelatedWork W2962764947 @default.
- W4385654506 hasRelatedWork W4224089748 @default.
- W4385654506 hasRelatedWork W4299912061 @default.
- W4385654506 hasRelatedWork W4379744446 @default.
- W4385654506 isParatext "false" @default.
- W4385654506 isRetracted "false" @default.
- W4385654506 workType "book-chapter" @default.