Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385655259> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385655259 endingPage "9049" @default.
- W4385655259 startingPage "9049" @default.
- W4385655259 abstract "A significant proportion of babies that are admitted to the neonatal intensive care unit (NICU) suffer from late onset sepsis (LOS). In order to prevent mortality and morbidity, the early detection of LOS is of the utmost importance. Recent works have found that the use of machine learning techniques might help detect LOS at an early stage. Some works have shown that linear methods (i.e., logistic regression) display a superior performance when predicting LOS. Nevertheless, as research on this topic is still in an early phase, it has not been ruled out that non-linear machine learning (ML) techniques can improve the predictive performance. Moreover, few studies have assessed the effect of parameters other than heart rate variability (HRV). Therefore, the current study investigates the effect of non-linear methods and assesses whether other vital parameters such as respiratory rate, perfusion index, and oxygen saturation could be of added value when predicting LOS. In contrast with the findings in the literature, it was found that non-linear methods showed a superior performance compared with linear models. In particular, it was found that random forest performed best (AUROC: 0.973), 24% better than logistic regression (AUROC: 0.782). Nevertheless, logistic regression was found to perform similarly to some non-linear models when trained with a short training window. Furthermore, when also taking training time into account, K-Nearest Neighbors was found to be the most beneficial (AUROC: 0.950). In line with the literature, we found that training the models on HRV features yielded the best results. Lastly, the results revealed that non-linear methods demonstrated a superior performance compared with linear methods when adding respiratory features to the HRV feature set, which ensured the greatest improvement in terms of AUROC score." @default.
- W4385655259 created "2023-08-09" @default.
- W4385655259 creator A5036246374 @default.
- W4385655259 creator A5071987242 @default.
- W4385655259 creator A5092611941 @default.
- W4385655259 date "2023-08-08" @default.
- W4385655259 modified "2023-10-17" @default.
- W4385655259 title "Early Detection of Late Onset Sepsis in Extremely Preterm Infants Using Machine Learning: Towards an Early Warning System" @default.
- W4385655259 cites W1487019984 @default.
- W4385655259 cites W1584935767 @default.
- W4385655259 cites W1678356000 @default.
- W4385655259 cites W1964404459 @default.
- W4385655259 cites W2007092752 @default.
- W4385655259 cites W2017046795 @default.
- W4385655259 cites W2020822256 @default.
- W4385655259 cites W2050942724 @default.
- W4385655259 cites W2086891095 @default.
- W4385655259 cites W2087347434 @default.
- W4385655259 cites W2169437634 @default.
- W4385655259 cites W2399259105 @default.
- W4385655259 cites W2559167724 @default.
- W4385655259 cites W2607320737 @default.
- W4385655259 cites W2801484616 @default.
- W4385655259 cites W2802037669 @default.
- W4385655259 cites W2911964244 @default.
- W4385655259 cites W2915312288 @default.
- W4385655259 cites W2959715303 @default.
- W4385655259 cites W2964422266 @default.
- W4385655259 cites W2992764683 @default.
- W4385655259 cites W3083289130 @default.
- W4385655259 cites W3125024173 @default.
- W4385655259 cites W3210628769 @default.
- W4385655259 cites W4255232901 @default.
- W4385655259 cites W4306722552 @default.
- W4385655259 cites W4313649912 @default.
- W4385655259 cites W4382501421 @default.
- W4385655259 cites W571200655 @default.
- W4385655259 doi "https://doi.org/10.3390/app13169049" @default.
- W4385655259 hasPublicationYear "2023" @default.
- W4385655259 type Work @default.
- W4385655259 citedByCount "0" @default.
- W4385655259 crossrefType "journal-article" @default.
- W4385655259 hasAuthorship W4385655259A5036246374 @default.
- W4385655259 hasAuthorship W4385655259A5071987242 @default.
- W4385655259 hasAuthorship W4385655259A5092611941 @default.
- W4385655259 hasBestOaLocation W43856552591 @default.
- W4385655259 hasConcept C105795698 @default.
- W4385655259 hasConcept C119857082 @default.
- W4385655259 hasConcept C151956035 @default.
- W4385655259 hasConcept C154945302 @default.
- W4385655259 hasConcept C163175372 @default.
- W4385655259 hasConcept C187212893 @default.
- W4385655259 hasConcept C194828623 @default.
- W4385655259 hasConcept C2777671062 @default.
- W4385655259 hasConcept C29825287 @default.
- W4385655259 hasConcept C33923547 @default.
- W4385655259 hasConcept C41008148 @default.
- W4385655259 hasConcept C48921125 @default.
- W4385655259 hasConcept C71924100 @default.
- W4385655259 hasConcept C76155785 @default.
- W4385655259 hasConceptScore W4385655259C105795698 @default.
- W4385655259 hasConceptScore W4385655259C119857082 @default.
- W4385655259 hasConceptScore W4385655259C151956035 @default.
- W4385655259 hasConceptScore W4385655259C154945302 @default.
- W4385655259 hasConceptScore W4385655259C163175372 @default.
- W4385655259 hasConceptScore W4385655259C187212893 @default.
- W4385655259 hasConceptScore W4385655259C194828623 @default.
- W4385655259 hasConceptScore W4385655259C2777671062 @default.
- W4385655259 hasConceptScore W4385655259C29825287 @default.
- W4385655259 hasConceptScore W4385655259C33923547 @default.
- W4385655259 hasConceptScore W4385655259C41008148 @default.
- W4385655259 hasConceptScore W4385655259C48921125 @default.
- W4385655259 hasConceptScore W4385655259C71924100 @default.
- W4385655259 hasConceptScore W4385655259C76155785 @default.
- W4385655259 hasIssue "16" @default.
- W4385655259 hasLocation W43856552591 @default.
- W4385655259 hasOpenAccess W4385655259 @default.
- W4385655259 hasPrimaryLocation W43856552591 @default.
- W4385655259 hasRelatedWork W1900500904 @default.
- W4385655259 hasRelatedWork W2063767105 @default.
- W4385655259 hasRelatedWork W2068889012 @default.
- W4385655259 hasRelatedWork W2124416866 @default.
- W4385655259 hasRelatedWork W2343747089 @default.
- W4385655259 hasRelatedWork W2562359147 @default.
- W4385655259 hasRelatedWork W2748952813 @default.
- W4385655259 hasRelatedWork W2899084033 @default.
- W4385655259 hasRelatedWork W4319978077 @default.
- W4385655259 hasRelatedWork W3126099810 @default.
- W4385655259 hasVolume "13" @default.
- W4385655259 isParatext "false" @default.
- W4385655259 isRetracted "false" @default.
- W4385655259 workType "article" @default.