Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385655400> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4385655400 endingPage "1592" @default.
- W4385655400 startingPage "1570" @default.
- W4385655400 abstract "Purpose The purpose of this paper is to identify the key influencing factors of aviation accidents and to predict the aviation accidents caused by the factors. Design/methodology/approach This paper proposes an improved gray correlation analysis (IGCA) theory to make the relational analysis of aviation accidents and influencing factors and find out the critical causes of aviation accidents. The optimal varying weight combination model (OVW-CM) is constructed based on gradient boosted regression tree (GBRT), extreme gradient boosting (XGBoost) and support vector regression (SVR) to predict aviation accidents due to critical factors. Findings The global aviation accident data from 1919 to 2020 is selected as the experimental data. The airplane, takeoff/landing and unexpected results are the leading causes of the aviation accidents based on IGCA. Then GBRT, XGBoost, SVR, equal-weight combination model (EQ-CM), variance-covariance combination model (VCW-CM) and OVW-CM are used to predict aviation accidents caused by airplane, takeoff/landing and unexpected results, respectively. The experimental results show that OVW-CM has a better prediction effect, and the prediction accuracy and stability are higher than other models. Originality/value Unlike the traditional gray correlation analysis (GCA), IGCA weights the sample by distance analysis to more objectively reflect the degree of influence of different factors on aviation accidents. OVW-CM is built by minimizing the combined prediction error at sample points and assigns different weights to different individual models at different moments, which can make full use of the advantages of each model and has higher prediction accuracy. And the model parameters of GBRT, XGBoost and SVR are optimized by the particle swarm algorithm. The study can guide the analysis and prediction of aviation accidents and provide a scientific basis for aviation safety management." @default.
- W4385655400 created "2023-08-09" @default.
- W4385655400 creator A5003221649 @default.
- W4385655400 creator A5011367933 @default.
- W4385655400 creator A5017577255 @default.
- W4385655400 creator A5061082516 @default.
- W4385655400 date "2023-08-09" @default.
- W4385655400 modified "2023-10-12" @default.
- W4385655400 title "Improved gray correlation analysis and combined prediction model for aviation accidents" @default.
- W4385655400 cites W1678356000 @default.
- W4385655400 cites W1972071258 @default.
- W4385655400 cites W1986528915 @default.
- W4385655400 cites W2009072756 @default.
- W4385655400 cites W2070493638 @default.
- W4385655400 cites W2078695982 @default.
- W4385655400 cites W2079473768 @default.
- W4385655400 cites W2155433308 @default.
- W4385655400 cites W2470971655 @default.
- W4385655400 cites W2558972342 @default.
- W4385655400 cites W2765830126 @default.
- W4385655400 cites W2768360248 @default.
- W4385655400 cites W2770375139 @default.
- W4385655400 cites W2789056699 @default.
- W4385655400 cites W2898206134 @default.
- W4385655400 cites W2912869979 @default.
- W4385655400 cites W2973652376 @default.
- W4385655400 cites W3038719270 @default.
- W4385655400 cites W3110929880 @default.
- W4385655400 cites W3129836205 @default.
- W4385655400 cites W3189457388 @default.
- W4385655400 cites W4239510810 @default.
- W4385655400 cites W4313472278 @default.
- W4385655400 doi "https://doi.org/10.1108/ec-06-2022-0384" @default.
- W4385655400 hasPublicationYear "2023" @default.
- W4385655400 type Work @default.
- W4385655400 citedByCount "0" @default.
- W4385655400 crossrefType "journal-article" @default.
- W4385655400 hasAuthorship W4385655400A5003221649 @default.
- W4385655400 hasAuthorship W4385655400A5011367933 @default.
- W4385655400 hasAuthorship W4385655400A5017577255 @default.
- W4385655400 hasAuthorship W4385655400A5061082516 @default.
- W4385655400 hasConcept C105795698 @default.
- W4385655400 hasConcept C127413603 @default.
- W4385655400 hasConcept C146978453 @default.
- W4385655400 hasConcept C152877465 @default.
- W4385655400 hasConcept C171146098 @default.
- W4385655400 hasConcept C2777717826 @default.
- W4385655400 hasConcept C2781407631 @default.
- W4385655400 hasConcept C2908613842 @default.
- W4385655400 hasConcept C33923547 @default.
- W4385655400 hasConcept C41008148 @default.
- W4385655400 hasConcept C74448152 @default.
- W4385655400 hasConceptScore W4385655400C105795698 @default.
- W4385655400 hasConceptScore W4385655400C127413603 @default.
- W4385655400 hasConceptScore W4385655400C146978453 @default.
- W4385655400 hasConceptScore W4385655400C152877465 @default.
- W4385655400 hasConceptScore W4385655400C171146098 @default.
- W4385655400 hasConceptScore W4385655400C2777717826 @default.
- W4385655400 hasConceptScore W4385655400C2781407631 @default.
- W4385655400 hasConceptScore W4385655400C2908613842 @default.
- W4385655400 hasConceptScore W4385655400C33923547 @default.
- W4385655400 hasConceptScore W4385655400C41008148 @default.
- W4385655400 hasConceptScore W4385655400C74448152 @default.
- W4385655400 hasIssue "7/8" @default.
- W4385655400 hasLocation W43856554001 @default.
- W4385655400 hasOpenAccess W4385655400 @default.
- W4385655400 hasPrimaryLocation W43856554001 @default.
- W4385655400 hasRelatedWork W2046491553 @default.
- W4385655400 hasRelatedWork W2066626298 @default.
- W4385655400 hasRelatedWork W2093172766 @default.
- W4385655400 hasRelatedWork W2320490816 @default.
- W4385655400 hasRelatedWork W2372766367 @default.
- W4385655400 hasRelatedWork W2767479146 @default.
- W4385655400 hasRelatedWork W3040849109 @default.
- W4385655400 hasRelatedWork W3157036344 @default.
- W4385655400 hasRelatedWork W3160143437 @default.
- W4385655400 hasRelatedWork W4214619676 @default.
- W4385655400 hasVolume "40" @default.
- W4385655400 isParatext "false" @default.
- W4385655400 isRetracted "false" @default.
- W4385655400 workType "article" @default.