Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385655496> ?p ?o ?g. }
- W4385655496 endingPage "9040" @default.
- W4385655496 startingPage "9040" @default.
- W4385655496 abstract "Self-localization is a crucial requirement for visual robot place recognition. Particularly, the 3D point cloud obtained from 3D laser rangefinders (LRF) is applied to it. The critical part is the efficiency and accuracy of place recognition of visual robots based on the 3D point cloud. The current solution is converting the 3D point clouds to 2D images, and then processing these with a convolutional neural network (CNN) classification. Although the popular scan-context descriptor obtained from the 3D data can retain parts of the 3D point cloud characteristics, its accuracy is slightly low. This is because the scan-context image under the adjacent label inclines to be confusing. This study reclassifies the image according to the CNN global features through image feature extraction. In addition, the dictionary-based coding is leveraged to construct the retrieval dataset. The experiment was conducted on the North-Campus-Long-Term (NCLT) dataset under four-seasons conditions. The results show that the proposed method is superior compared to the other methods without real-time Global Positioning System (GPS) information." @default.
- W4385655496 created "2023-08-09" @default.
- W4385655496 creator A5007423029 @default.
- W4385655496 creator A5038890569 @default.
- W4385655496 date "2023-08-07" @default.
- W4385655496 modified "2023-10-15" @default.
- W4385655496 title "Visual Place Recognition of Robots via Global Features of Scan-Context Descriptors with Dictionary-Based Coding" @default.
- W4385655496 cites W1970695998 @default.
- W4385655496 cites W1983699808 @default.
- W4385655496 cites W1988322066 @default.
- W4385655496 cites W2117539524 @default.
- W4385655496 cites W2135168278 @default.
- W4385655496 cites W2147277317 @default.
- W4385655496 cites W2150593711 @default.
- W4385655496 cites W2284029970 @default.
- W4385655496 cites W2565639579 @default.
- W4385655496 cites W2565998037 @default.
- W4385655496 cites W2597485909 @default.
- W4385655496 cites W2739127893 @default.
- W4385655496 cites W2904951271 @default.
- W4385655496 cites W2906424845 @default.
- W4385655496 cites W2910489334 @default.
- W4385655496 cites W2914921243 @default.
- W4385655496 cites W2971023449 @default.
- W4385655496 cites W2997522185 @default.
- W4385655496 cites W3006403767 @default.
- W4385655496 cites W3024720120 @default.
- W4385655496 cites W3037260875 @default.
- W4385655496 cites W3037467553 @default.
- W4385655496 cites W3120082156 @default.
- W4385655496 cites W3130266661 @default.
- W4385655496 cites W3146097035 @default.
- W4385655496 cites W3152789251 @default.
- W4385655496 cites W3188631167 @default.
- W4385655496 cites W3196890180 @default.
- W4385655496 cites W3199572129 @default.
- W4385655496 cites W4210683801 @default.
- W4385655496 cites W4226040132 @default.
- W4385655496 cites W4282830511 @default.
- W4385655496 cites W4291124834 @default.
- W4385655496 cites W4308506829 @default.
- W4385655496 cites W4309486142 @default.
- W4385655496 doi "https://doi.org/10.3390/app13159040" @default.
- W4385655496 hasPublicationYear "2023" @default.
- W4385655496 type Work @default.
- W4385655496 citedByCount "0" @default.
- W4385655496 crossrefType "journal-article" @default.
- W4385655496 hasAuthorship W4385655496A5007423029 @default.
- W4385655496 hasAuthorship W4385655496A5038890569 @default.
- W4385655496 hasBestOaLocation W43856554961 @default.
- W4385655496 hasConcept C105795698 @default.
- W4385655496 hasConcept C131979681 @default.
- W4385655496 hasConcept C138885662 @default.
- W4385655496 hasConcept C153180895 @default.
- W4385655496 hasConcept C154945302 @default.
- W4385655496 hasConcept C166957645 @default.
- W4385655496 hasConcept C179518139 @default.
- W4385655496 hasConcept C205649164 @default.
- W4385655496 hasConcept C2776401178 @default.
- W4385655496 hasConcept C2779343474 @default.
- W4385655496 hasConcept C31972630 @default.
- W4385655496 hasConcept C33923547 @default.
- W4385655496 hasConcept C41008148 @default.
- W4385655496 hasConcept C41895202 @default.
- W4385655496 hasConcept C52622490 @default.
- W4385655496 hasConcept C77637269 @default.
- W4385655496 hasConcept C81363708 @default.
- W4385655496 hasConceptScore W4385655496C105795698 @default.
- W4385655496 hasConceptScore W4385655496C131979681 @default.
- W4385655496 hasConceptScore W4385655496C138885662 @default.
- W4385655496 hasConceptScore W4385655496C153180895 @default.
- W4385655496 hasConceptScore W4385655496C154945302 @default.
- W4385655496 hasConceptScore W4385655496C166957645 @default.
- W4385655496 hasConceptScore W4385655496C179518139 @default.
- W4385655496 hasConceptScore W4385655496C205649164 @default.
- W4385655496 hasConceptScore W4385655496C2776401178 @default.
- W4385655496 hasConceptScore W4385655496C2779343474 @default.
- W4385655496 hasConceptScore W4385655496C31972630 @default.
- W4385655496 hasConceptScore W4385655496C33923547 @default.
- W4385655496 hasConceptScore W4385655496C41008148 @default.
- W4385655496 hasConceptScore W4385655496C41895202 @default.
- W4385655496 hasConceptScore W4385655496C52622490 @default.
- W4385655496 hasConceptScore W4385655496C77637269 @default.
- W4385655496 hasConceptScore W4385655496C81363708 @default.
- W4385655496 hasIssue "15" @default.
- W4385655496 hasLocation W43856554961 @default.
- W4385655496 hasOpenAccess W4385655496 @default.
- W4385655496 hasPrimaryLocation W43856554961 @default.
- W4385655496 hasRelatedWork W1504288058 @default.
- W4385655496 hasRelatedWork W2146076056 @default.
- W4385655496 hasRelatedWork W2167293474 @default.
- W4385655496 hasRelatedWork W2331674254 @default.
- W4385655496 hasRelatedWork W2546942002 @default.
- W4385655496 hasRelatedWork W2811390910 @default.
- W4385655496 hasRelatedWork W2979718872 @default.
- W4385655496 hasRelatedWork W3158534694 @default.
- W4385655496 hasRelatedWork W3206828132 @default.
- W4385655496 hasRelatedWork W4290774832 @default.