Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385656704> ?p ?o ?g. }
- W4385656704 endingPage "22050" @default.
- W4385656704 startingPage "22040" @default.
- W4385656704 abstract "Fault diagnosis of train bearings is crucial to ensure the reliability and safety of a running train. However, it is a big challenge to recognize new fault types of the train bearings under variable working conditions and heavy noise environments. This article proposes a new domain adaptation model, called dual classifier-discriminator adversarial networks (DCDAN), for open set fault diagnosis of the train bearings. The main contributions of the proposed DCDAN are that a novel weighting strategy is designed by constructing a weighting module with a dual classifier-discriminator structure to separate the new fault types in the target domain from the shared health types between the source and target domains, and a parallel channel attention module (PCAM) is embedded in the feature extractor of the DCDAN to promote feature extraction capability from noisy monitoring data. Specifically, the monitoring data are first input to the feature extractor to extract rich key health state information with the help of the PCAM. Then, the features are input to the weighting module to learn credible weights by unifying the similarity between the samples in the two domains evaluated from different perspectives. Finally, the weights are assigned to the adversarial training between the feature extractor and one of the classifiers for accurate separation of the new fault types and identification of the shared health types. Experimental results on two train bearing datasets verified the effectiveness and superiority of the proposed method, indicating that the proposed method has great potential for application in practical new fault recognition of train bearings." @default.
- W4385656704 created "2023-08-09" @default.
- W4385656704 creator A5054789987 @default.
- W4385656704 creator A5059036742 @default.
- W4385656704 creator A5072145928 @default.
- W4385656704 creator A5078189730 @default.
- W4385656704 creator A5091072755 @default.
- W4385656704 date "2023-09-15" @default.
- W4385656704 modified "2023-10-14" @default.
- W4385656704 title "Dual Classifier-Discriminator Adversarial Networks for Open Set Fault Diagnosis of Train Bearings" @default.
- W4385656704 cites W1990778692 @default.
- W4385656704 cites W2752782242 @default.
- W4385656704 cites W2948429981 @default.
- W4385656704 cites W2962835731 @default.
- W4385656704 cites W2963240573 @default.
- W4385656704 cites W2964012402 @default.
- W4385656704 cites W2989818023 @default.
- W4385656704 cites W2993397516 @default.
- W4385656704 cites W2998666297 @default.
- W4385656704 cites W3008397561 @default.
- W4385656704 cites W3034552520 @default.
- W4385656704 cites W3040304705 @default.
- W4385656704 cites W3044415513 @default.
- W4385656704 cites W3046248607 @default.
- W4385656704 cites W3094429701 @default.
- W4385656704 cites W3100804201 @default.
- W4385656704 cites W3122985179 @default.
- W4385656704 cites W3133502632 @default.
- W4385656704 cites W3140182103 @default.
- W4385656704 cites W3142041738 @default.
- W4385656704 cites W3184578020 @default.
- W4385656704 cites W4200356769 @default.
- W4385656704 cites W4205110679 @default.
- W4385656704 cites W4205237702 @default.
- W4385656704 cites W4206057957 @default.
- W4385656704 cites W4226065200 @default.
- W4385656704 cites W4285127705 @default.
- W4385656704 cites W4285238563 @default.
- W4385656704 doi "https://doi.org/10.1109/jsen.2023.3301593" @default.
- W4385656704 hasPublicationYear "2023" @default.
- W4385656704 type Work @default.
- W4385656704 citedByCount "0" @default.
- W4385656704 crossrefType "journal-article" @default.
- W4385656704 hasAuthorship W4385656704A5054789987 @default.
- W4385656704 hasAuthorship W4385656704A5059036742 @default.
- W4385656704 hasAuthorship W4385656704A5072145928 @default.
- W4385656704 hasAuthorship W4385656704A5078189730 @default.
- W4385656704 hasAuthorship W4385656704A5091072755 @default.
- W4385656704 hasConcept C119857082 @default.
- W4385656704 hasConcept C124101348 @default.
- W4385656704 hasConcept C126838900 @default.
- W4385656704 hasConcept C127313418 @default.
- W4385656704 hasConcept C153180895 @default.
- W4385656704 hasConcept C154945302 @default.
- W4385656704 hasConcept C165205528 @default.
- W4385656704 hasConcept C175551986 @default.
- W4385656704 hasConcept C183115368 @default.
- W4385656704 hasConcept C2779803651 @default.
- W4385656704 hasConcept C41008148 @default.
- W4385656704 hasConcept C52622490 @default.
- W4385656704 hasConcept C71924100 @default.
- W4385656704 hasConcept C76155785 @default.
- W4385656704 hasConcept C94915269 @default.
- W4385656704 hasConcept C95623464 @default.
- W4385656704 hasConceptScore W4385656704C119857082 @default.
- W4385656704 hasConceptScore W4385656704C124101348 @default.
- W4385656704 hasConceptScore W4385656704C126838900 @default.
- W4385656704 hasConceptScore W4385656704C127313418 @default.
- W4385656704 hasConceptScore W4385656704C153180895 @default.
- W4385656704 hasConceptScore W4385656704C154945302 @default.
- W4385656704 hasConceptScore W4385656704C165205528 @default.
- W4385656704 hasConceptScore W4385656704C175551986 @default.
- W4385656704 hasConceptScore W4385656704C183115368 @default.
- W4385656704 hasConceptScore W4385656704C2779803651 @default.
- W4385656704 hasConceptScore W4385656704C41008148 @default.
- W4385656704 hasConceptScore W4385656704C52622490 @default.
- W4385656704 hasConceptScore W4385656704C71924100 @default.
- W4385656704 hasConceptScore W4385656704C76155785 @default.
- W4385656704 hasConceptScore W4385656704C94915269 @default.
- W4385656704 hasConceptScore W4385656704C95623464 @default.
- W4385656704 hasFunder F4320321001 @default.
- W4385656704 hasIssue "18" @default.
- W4385656704 hasLocation W43856567041 @default.
- W4385656704 hasOpenAccess W4385656704 @default.
- W4385656704 hasPrimaryLocation W43856567041 @default.
- W4385656704 hasRelatedWork W1964120219 @default.
- W4385656704 hasRelatedWork W2000165426 @default.
- W4385656704 hasRelatedWork W2144059113 @default.
- W4385656704 hasRelatedWork W2146076056 @default.
- W4385656704 hasRelatedWork W2263302838 @default.
- W4385656704 hasRelatedWork W2385132419 @default.
- W4385656704 hasRelatedWork W2563096758 @default.
- W4385656704 hasRelatedWork W2772780115 @default.
- W4385656704 hasRelatedWork W2811390910 @default.
- W4385656704 hasRelatedWork W3003836766 @default.
- W4385656704 hasVolume "23" @default.
- W4385656704 isParatext "false" @default.
- W4385656704 isRetracted "false" @default.