Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385657384> ?p ?o ?g. }
- W4385657384 endingPage "115505" @default.
- W4385657384 startingPage "115505" @default.
- W4385657384 abstract "The motivation of this study is to compare four different machine learning algorithms which are support vector regression, multiple linear regression, J48 pruned tree, and M5 Rules, to predict the fuel consumption (FC) of a large marine diesel engine utilized as the main engine on a tanker vessel. This study aims to fill a literature gap by comparing two algorithms, which have not been used for this problem in the rule and tree-based literature, with the other two frequently used algorithms. The data gathered from noon reports and the logbook of an oceangoing tanker vessel involves the operational and environmental parameters. The model performances, prediction accuracy, and error deviations on the test set are demonstrated. The importance of each feature on fuel consumption is discussed regarding the rules created by the algorithms. The M5 Rules algorithm has the highest performance with the truest predictions with a correlation score of 0.9666, mean absolute error of 2.3536, and root mean squared error of 3.3947. Slip, speed, distance, and wind direction are the operational and environmental dependent variables that have more influence on the FC. M5 Rules algorithm has provided a clear sorting for each feature's importance regarding conditions." @default.
- W4385657384 created "2023-08-09" @default.
- W4385657384 creator A5027189711 @default.
- W4385657384 creator A5043992876 @default.
- W4385657384 creator A5070934739 @default.
- W4385657384 date "2023-10-01" @default.
- W4385657384 modified "2023-10-03" @default.
- W4385657384 title "Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine" @default.
- W4385657384 cites W1781794689 @default.
- W4385657384 cites W1964357740 @default.
- W4385657384 cites W2007178835 @default.
- W4385657384 cites W2009927598 @default.
- W4385657384 cites W2039240409 @default.
- W4385657384 cites W2046667612 @default.
- W4385657384 cites W2062611449 @default.
- W4385657384 cites W2069929199 @default.
- W4385657384 cites W2083641249 @default.
- W4385657384 cites W2085281262 @default.
- W4385657384 cites W2102148524 @default.
- W4385657384 cites W2122284941 @default.
- W4385657384 cites W2133990480 @default.
- W4385657384 cites W2252436850 @default.
- W4385657384 cites W2332630645 @default.
- W4385657384 cites W2591703502 @default.
- W4385657384 cites W271921197 @default.
- W4385657384 cites W2782213067 @default.
- W4385657384 cites W2794916302 @default.
- W4385657384 cites W2799900537 @default.
- W4385657384 cites W2800111877 @default.
- W4385657384 cites W2888328403 @default.
- W4385657384 cites W2913923423 @default.
- W4385657384 cites W2952148838 @default.
- W4385657384 cites W2968063164 @default.
- W4385657384 cites W2982225351 @default.
- W4385657384 cites W3006838544 @default.
- W4385657384 cites W3021018522 @default.
- W4385657384 cites W3031566788 @default.
- W4385657384 cites W3036796713 @default.
- W4385657384 cites W3124903390 @default.
- W4385657384 cites W3127746231 @default.
- W4385657384 cites W3129632166 @default.
- W4385657384 cites W3156473400 @default.
- W4385657384 cites W3193600109 @default.
- W4385657384 cites W4224327231 @default.
- W4385657384 cites W4236137412 @default.
- W4385657384 cites W4242614154 @default.
- W4385657384 cites W4316253570 @default.
- W4385657384 doi "https://doi.org/10.1016/j.oceaneng.2023.115505" @default.
- W4385657384 hasPublicationYear "2023" @default.
- W4385657384 type Work @default.
- W4385657384 citedByCount "0" @default.
- W4385657384 crossrefType "journal-article" @default.
- W4385657384 hasAuthorship W4385657384A5027189711 @default.
- W4385657384 hasAuthorship W4385657384A5043992876 @default.
- W4385657384 hasAuthorship W4385657384A5070934739 @default.
- W4385657384 hasConcept C105795698 @default.
- W4385657384 hasConcept C119857082 @default.
- W4385657384 hasConcept C12267149 @default.
- W4385657384 hasConcept C127413603 @default.
- W4385657384 hasConcept C138885662 @default.
- W4385657384 hasConcept C139945424 @default.
- W4385657384 hasConcept C154945302 @default.
- W4385657384 hasConcept C171146098 @default.
- W4385657384 hasConcept C2776401178 @default.
- W4385657384 hasConcept C2780804531 @default.
- W4385657384 hasConcept C33923547 @default.
- W4385657384 hasConcept C41008148 @default.
- W4385657384 hasConcept C41895202 @default.
- W4385657384 hasConcept C45882903 @default.
- W4385657384 hasConcept C52001869 @default.
- W4385657384 hasConcept C52003472 @default.
- W4385657384 hasConcept C84525736 @default.
- W4385657384 hasConceptScore W4385657384C105795698 @default.
- W4385657384 hasConceptScore W4385657384C119857082 @default.
- W4385657384 hasConceptScore W4385657384C12267149 @default.
- W4385657384 hasConceptScore W4385657384C127413603 @default.
- W4385657384 hasConceptScore W4385657384C138885662 @default.
- W4385657384 hasConceptScore W4385657384C139945424 @default.
- W4385657384 hasConceptScore W4385657384C154945302 @default.
- W4385657384 hasConceptScore W4385657384C171146098 @default.
- W4385657384 hasConceptScore W4385657384C2776401178 @default.
- W4385657384 hasConceptScore W4385657384C2780804531 @default.
- W4385657384 hasConceptScore W4385657384C33923547 @default.
- W4385657384 hasConceptScore W4385657384C41008148 @default.
- W4385657384 hasConceptScore W4385657384C41895202 @default.
- W4385657384 hasConceptScore W4385657384C45882903 @default.
- W4385657384 hasConceptScore W4385657384C52001869 @default.
- W4385657384 hasConceptScore W4385657384C52003472 @default.
- W4385657384 hasConceptScore W4385657384C84525736 @default.
- W4385657384 hasLocation W43856573841 @default.
- W4385657384 hasOpenAccess W4385657384 @default.
- W4385657384 hasPrimaryLocation W43856573841 @default.
- W4385657384 hasRelatedWork W1996541855 @default.
- W4385657384 hasRelatedWork W2506787293 @default.
- W4385657384 hasRelatedWork W2770139578 @default.
- W4385657384 hasRelatedWork W3108967136 @default.
- W4385657384 hasRelatedWork W3186233728 @default.
- W4385657384 hasRelatedWork W3195168932 @default.