Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385657586> ?p ?o ?g. }
- W4385657586 endingPage "108537" @default.
- W4385657586 startingPage "108537" @default.
- W4385657586 abstract "Carbon-based electrodes effectively promote the specific capacitance of the supercapacitors. The Specific capacitance of carbon-based electrodes has been modeled using an artificial neural network (ANN) with the backpropagation learning algorithm. This paper describes the creation of an ANN model to interpret how voltage window (V), ID/IG, N/O-dopings (at. %), pore size (nm), and specific surface area (m2/g) parameters influence the specific capacitance (F/g). The experimentation has been carried out with several ANN architectures to achieve the best fit between the inputs and output. The model predictions (adj.R2 = 0.99) and estimation of the isolated effect of independent variables, such as voltage window, cannot be varied independently in practice. The results from the ANN model were consistent with the existing theory and reasonable in estimating the specific capacitance beyond the scope of the experimental data. The model successfully expresses the specific capacitance of carbon-based supercapacitors as a function of physiochemical and electrochemical process variables and can be used to design electrical storage devices." @default.
- W4385657586 created "2023-08-09" @default.
- W4385657586 creator A5007761536 @default.
- W4385657586 creator A5008976923 @default.
- W4385657586 creator A5010378384 @default.
- W4385657586 creator A5018301291 @default.
- W4385657586 creator A5033276490 @default.
- W4385657586 creator A5059288152 @default.
- W4385657586 creator A5062743034 @default.
- W4385657586 creator A5077386411 @default.
- W4385657586 date "2023-11-01" @default.
- W4385657586 modified "2023-10-17" @default.
- W4385657586 title "Modeling capacitance of carbon-based supercapacitors by artificial neural networks" @default.
- W4385657586 cites W1955805973 @default.
- W4385657586 cites W1985530487 @default.
- W4385657586 cites W2004179704 @default.
- W4385657586 cites W2017498317 @default.
- W4385657586 cites W2101927907 @default.
- W4385657586 cites W2111444039 @default.
- W4385657586 cites W2128508198 @default.
- W4385657586 cites W2209166519 @default.
- W4385657586 cites W2324792677 @default.
- W4385657586 cites W2807922218 @default.
- W4385657586 cites W2890166665 @default.
- W4385657586 cites W2919484514 @default.
- W4385657586 cites W2942491183 @default.
- W4385657586 cites W2971894235 @default.
- W4385657586 cites W2979711536 @default.
- W4385657586 cites W2982639672 @default.
- W4385657586 cites W3006269673 @default.
- W4385657586 cites W3019040610 @default.
- W4385657586 cites W3030905558 @default.
- W4385657586 cites W3120551159 @default.
- W4385657586 cites W3128511414 @default.
- W4385657586 cites W3128904955 @default.
- W4385657586 cites W3157522781 @default.
- W4385657586 cites W3162033173 @default.
- W4385657586 cites W317861636 @default.
- W4385657586 cites W3197737528 @default.
- W4385657586 cites W3198845127 @default.
- W4385657586 cites W3202152486 @default.
- W4385657586 cites W3208557460 @default.
- W4385657586 cites W3216017078 @default.
- W4385657586 cites W4200618537 @default.
- W4385657586 cites W4280644943 @default.
- W4385657586 cites W4281835701 @default.
- W4385657586 cites W4285083432 @default.
- W4385657586 cites W4290090500 @default.
- W4385657586 cites W4362466495 @default.
- W4385657586 doi "https://doi.org/10.1016/j.est.2023.108537" @default.
- W4385657586 hasPublicationYear "2023" @default.
- W4385657586 type Work @default.
- W4385657586 citedByCount "1" @default.
- W4385657586 countsByYear W43856575862023 @default.
- W4385657586 crossrefType "journal-article" @default.
- W4385657586 hasAuthorship W4385657586A5007761536 @default.
- W4385657586 hasAuthorship W4385657586A5008976923 @default.
- W4385657586 hasAuthorship W4385657586A5010378384 @default.
- W4385657586 hasAuthorship W4385657586A5018301291 @default.
- W4385657586 hasAuthorship W4385657586A5033276490 @default.
- W4385657586 hasAuthorship W4385657586A5059288152 @default.
- W4385657586 hasAuthorship W4385657586A5062743034 @default.
- W4385657586 hasAuthorship W4385657586A5077386411 @default.
- W4385657586 hasConcept C111919701 @default.
- W4385657586 hasConcept C119599485 @default.
- W4385657586 hasConcept C127413603 @default.
- W4385657586 hasConcept C147789679 @default.
- W4385657586 hasConcept C154945302 @default.
- W4385657586 hasConcept C155032097 @default.
- W4385657586 hasConcept C165801399 @default.
- W4385657586 hasConcept C17525397 @default.
- W4385657586 hasConcept C185592680 @default.
- W4385657586 hasConcept C186060115 @default.
- W4385657586 hasConcept C192562407 @default.
- W4385657586 hasConcept C24326235 @default.
- W4385657586 hasConcept C30066665 @default.
- W4385657586 hasConcept C41008148 @default.
- W4385657586 hasConcept C50644808 @default.
- W4385657586 hasConcept C6585489 @default.
- W4385657586 hasConcept C86803240 @default.
- W4385657586 hasConcept C98045186 @default.
- W4385657586 hasConceptScore W4385657586C111919701 @default.
- W4385657586 hasConceptScore W4385657586C119599485 @default.
- W4385657586 hasConceptScore W4385657586C127413603 @default.
- W4385657586 hasConceptScore W4385657586C147789679 @default.
- W4385657586 hasConceptScore W4385657586C154945302 @default.
- W4385657586 hasConceptScore W4385657586C155032097 @default.
- W4385657586 hasConceptScore W4385657586C165801399 @default.
- W4385657586 hasConceptScore W4385657586C17525397 @default.
- W4385657586 hasConceptScore W4385657586C185592680 @default.
- W4385657586 hasConceptScore W4385657586C186060115 @default.
- W4385657586 hasConceptScore W4385657586C192562407 @default.
- W4385657586 hasConceptScore W4385657586C24326235 @default.
- W4385657586 hasConceptScore W4385657586C30066665 @default.
- W4385657586 hasConceptScore W4385657586C41008148 @default.
- W4385657586 hasConceptScore W4385657586C50644808 @default.
- W4385657586 hasConceptScore W4385657586C6585489 @default.
- W4385657586 hasConceptScore W4385657586C86803240 @default.