Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385662803> ?p ?o ?g. }
- W4385662803 endingPage "735" @default.
- W4385662803 startingPage "726" @default.
- W4385662803 abstract "Aims To build machine learning-based radiomics models to discriminate between high- (HGGs) and low-grade gliomas (LGGs) and to compare the effectiveness of three-dimensional arterial spin labelling (3D-ASL) to evaluate which is a better method. Materials and methods We retrospectively analysed the magnetic resonance imaging T1WI-enhanced images of 105 patients with gliomas that were pathologically confirmed in our hospital. We divided the patients into a training group and a verification group at a ratio of 8:2; 200 patients from the Brain Tumour Segmentation Challenge 2020 were selected as the test group for image segmentation, feature extraction and screening. We constructed models using multilayer perceptron (MLP), support vector machine, random forest and logistic regression and evaluated their predictive performance. We obtained the mean maximum relative cerebral blood flow (rCBFmax) value from 3D-ASL of 105 patients from the hospital to evaluate its efficacy in discriminating between HGGs and LGGs. Results In machine learning, the MLP classifier model exhibited the best performance in discriminating between HGGs and LGGs; the areas under the curve obtained by MLP and rCBFmax were 0.968 versus 0.815 (verification group) and 0.981 versus 0.815 (test group), respectively. The machine learning-based MLP classifier model performed better in discriminating between HGGs and LGGs than 3D-ASL. Conclusion In our study, we found that machine learning-based radiomics models and 3D-ASL were valuable in discriminating between HGGs and LGGs and between them, the machine learning-based MLP model had better diagnostic performance." @default.
- W4385662803 created "2023-08-09" @default.
- W4385662803 creator A5002055762 @default.
- W4385662803 creator A5019316915 @default.
- W4385662803 creator A5029313407 @default.
- W4385662803 creator A5046515740 @default.
- W4385662803 creator A5058063838 @default.
- W4385662803 creator A5058932447 @default.
- W4385662803 creator A5072177662 @default.
- W4385662803 creator A5082096321 @default.
- W4385662803 date "2023-11-01" @default.
- W4385662803 modified "2023-10-17" @default.
- W4385662803 title "Use of Radiomics Models in Preoperative Grading of Cerebral Gliomas and Comparison with Three-dimensional Arterial Spin Labelling" @default.
- W4385662803 cites W1008706178 @default.
- W4385662803 cites W1528457551 @default.
- W4385662803 cites W1641498739 @default.
- W4385662803 cites W1964223188 @default.
- W4385662803 cites W2008931958 @default.
- W4385662803 cites W2097996501 @default.
- W4385662803 cites W2098087136 @default.
- W4385662803 cites W2098905038 @default.
- W4385662803 cites W2101881085 @default.
- W4385662803 cites W2106407655 @default.
- W4385662803 cites W2135492580 @default.
- W4385662803 cites W2168932357 @default.
- W4385662803 cites W2169262628 @default.
- W4385662803 cites W2295186988 @default.
- W4385662803 cites W2312093659 @default.
- W4385662803 cites W2366536035 @default.
- W4385662803 cites W2399319245 @default.
- W4385662803 cites W2560738400 @default.
- W4385662803 cites W2614549267 @default.
- W4385662803 cites W2751069891 @default.
- W4385662803 cites W2765931747 @default.
- W4385662803 cites W2769790028 @default.
- W4385662803 cites W2803497028 @default.
- W4385662803 cites W2805955117 @default.
- W4385662803 cites W2884741638 @default.
- W4385662803 cites W2910109668 @default.
- W4385662803 cites W2970194854 @default.
- W4385662803 cites W3107671077 @default.
- W4385662803 cites W3107794477 @default.
- W4385662803 cites W3118341871 @default.
- W4385662803 cites W3174246647 @default.
- W4385662803 cites W3198079050 @default.
- W4385662803 cites W3211511275 @default.
- W4385662803 cites W4311885904 @default.
- W4385662803 cites W4315643346 @default.
- W4385662803 doi "https://doi.org/10.1016/j.clon.2023.08.001" @default.
- W4385662803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37598093" @default.
- W4385662803 hasPublicationYear "2023" @default.
- W4385662803 type Work @default.
- W4385662803 citedByCount "0" @default.
- W4385662803 crossrefType "journal-article" @default.
- W4385662803 hasAuthorship W4385662803A5002055762 @default.
- W4385662803 hasAuthorship W4385662803A5019316915 @default.
- W4385662803 hasAuthorship W4385662803A5029313407 @default.
- W4385662803 hasAuthorship W4385662803A5046515740 @default.
- W4385662803 hasAuthorship W4385662803A5058063838 @default.
- W4385662803 hasAuthorship W4385662803A5058932447 @default.
- W4385662803 hasAuthorship W4385662803A5072177662 @default.
- W4385662803 hasAuthorship W4385662803A5082096321 @default.
- W4385662803 hasConcept C119857082 @default.
- W4385662803 hasConcept C12267149 @default.
- W4385662803 hasConcept C126322002 @default.
- W4385662803 hasConcept C126838900 @default.
- W4385662803 hasConcept C127413603 @default.
- W4385662803 hasConcept C143409427 @default.
- W4385662803 hasConcept C147176958 @default.
- W4385662803 hasConcept C151956035 @default.
- W4385662803 hasConcept C154945302 @default.
- W4385662803 hasConcept C169258074 @default.
- W4385662803 hasConcept C179717631 @default.
- W4385662803 hasConcept C2777286243 @default.
- W4385662803 hasConcept C2778227246 @default.
- W4385662803 hasConcept C41008148 @default.
- W4385662803 hasConcept C502942594 @default.
- W4385662803 hasConcept C50644808 @default.
- W4385662803 hasConcept C71924100 @default.
- W4385662803 hasConcept C89600930 @default.
- W4385662803 hasConceptScore W4385662803C119857082 @default.
- W4385662803 hasConceptScore W4385662803C12267149 @default.
- W4385662803 hasConceptScore W4385662803C126322002 @default.
- W4385662803 hasConceptScore W4385662803C126838900 @default.
- W4385662803 hasConceptScore W4385662803C127413603 @default.
- W4385662803 hasConceptScore W4385662803C143409427 @default.
- W4385662803 hasConceptScore W4385662803C147176958 @default.
- W4385662803 hasConceptScore W4385662803C151956035 @default.
- W4385662803 hasConceptScore W4385662803C154945302 @default.
- W4385662803 hasConceptScore W4385662803C169258074 @default.
- W4385662803 hasConceptScore W4385662803C179717631 @default.
- W4385662803 hasConceptScore W4385662803C2777286243 @default.
- W4385662803 hasConceptScore W4385662803C2778227246 @default.
- W4385662803 hasConceptScore W4385662803C41008148 @default.
- W4385662803 hasConceptScore W4385662803C502942594 @default.
- W4385662803 hasConceptScore W4385662803C50644808 @default.
- W4385662803 hasConceptScore W4385662803C71924100 @default.
- W4385662803 hasConceptScore W4385662803C89600930 @default.