Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385667029> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385667029 endingPage "e7264005" @default.
- W4385667029 startingPage "e7264005" @default.
- W4385667029 abstract "Topic: 15. Myeloproliferative neoplasms - Biology & Translational Research Background: The classical BCR-ABL1-negative myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF). Artificial intelligence (AI) model has attracted substantial attention for its satisfy performance in hematological malignancies. The application in MPN diagnosis is still rarely reported. Aims: To prospectively develop an intelligence neural network based deep learning model for myeloproliferative neoplasm diagnostics and subtypes differentiation, briefly named INDEED model, which incorporates pathologic whole slide image (WSI). Methods: Training set was composed of totally 819 MPN patients and 232 non-MPN controls from five centers in China, details of composition shown in Figure 1B. Hematoxylin and Eosin (HE) staining WSI of bone marrow biopsy of all the participants were collected and scanned using Pannoramic SCAN 150 (3DHISTECH Ltd., Budapest, Hungary). INDEED modelling process included WSI automatic pre-processing and selection, self-supervised contrastive learning feature extraction, and multiple instance learning and classifying (Figure 1A), which was tuned in the internal testing set. Further, the INDEED model was independently validated in the set additionally collected from the four hospitals (Validation Set 1), and externally validated in the other two hospitals (Validation Set 2 & 3). Area under curve (AUC) and 95% confidence interval of receiver operating characteristic (ROC) analysis was used to evaluate model accuracy, and the optimal cut-off points for subtypes were estimated by Youden index in internal testing set (Figure 1C). Results: INDEED model for MPN diagnostics and subtype differentiation reached AUC values over 0.95 and 0.89 in the training set and internal testing set, respectively. In the validation phase, for MPN diagnostics versus non-MPN controls, INDEED achieved AUC of 0.911(0.890-0.932) in Validation Set 1, and well replicated in the Validation Sets 2 & 3, obtaining AUCs of 0.938(0.922-0.953) and 0.804(0.759-0.842), respectively. For PV subtype differentiation, INDEED achieved AUC of 0.847 (0.821-0.874) in validation Set 1, and further replicated in Validation Sets 2 and 3, respectively, which got AUCs of 0.928(0.910-0.941) and 0.899(0.879-0.915). For ET differentiation, INDEED obtained AUCs of 0.873(0.854-0.890), 0.833(0.805-0.860), and 0.832(0.804-0.864) in Validation Sets 1 to 3, respectively. Similar, for pre-PMF, AUCs of the model were 0.894(0.863-0.922), 0.782(0.732-0.827), 0.847(0.817-0.870), respectively. For overt-PMF, the AUC values were estimated as 0.981(0.972-0.990), 1.000(1.000-1.000), and 1.000(1.000-1.000) in Validation Sets 1 to 3, respectively. Overall, in the combined validation set of the three validation sets, the average AUC of INDEED achieved 0.884 for MPN, and 0.891 for PV, 0.846 for ET,0.841 for pre-PMP, and 0.994 for overt-PMF (Figure 1D). In the combined validation set, 167 of 345 samples (48.4%) had two predicted subtypes; the redefined accuracy reached 77.2%. In addition, there were a small fraction of samples (9.3%) were predicted into three subtypes, which had overall 90.6% accuracy. Overall, the INDEED model reached 83.8% accuracy. Distribution of non-unique predictions may provide key objectives for future model-assisted subtype differentiation. Summary/Conclusion: The proposed INDEED model exhibits well performance in MPN diagnostics and subtypes differentiation. The model without cell-level annotation is convenient to train and fast to apply, and provide a new insight for the AI-assisted MPN diagnosis.Keywords: Myeloproliferative disorder" @default.
- W4385667029 created "2023-08-09" @default.
- W4385667029 creator A5004483141 @default.
- W4385667029 creator A5005412712 @default.
- W4385667029 creator A5006847089 @default.
- W4385667029 creator A5018244700 @default.
- W4385667029 creator A5021979312 @default.
- W4385667029 creator A5022501218 @default.
- W4385667029 creator A5031767581 @default.
- W4385667029 creator A5032066462 @default.
- W4385667029 creator A5039857961 @default.
- W4385667029 creator A5046225712 @default.
- W4385667029 creator A5057119273 @default.
- W4385667029 creator A5057806017 @default.
- W4385667029 creator A5074544398 @default.
- W4385667029 creator A5081086015 @default.
- W4385667029 creator A5081352122 @default.
- W4385667029 creator A5081798199 @default.
- W4385667029 creator A5092614003 @default.
- W4385667029 date "2023-08-01" @default.
- W4385667029 modified "2023-09-27" @default.
- W4385667029 title "P995: INDEED: A DEEP LEARNING MODEL FOR DIAGNOSIS AND SUBTYPES DIFFERENTIATION OF MYELOPROLIFERATIVE NEOPLASM BASED ON INTELLIGENCE NEURAL NETWORK" @default.
- W4385667029 doi "https://doi.org/10.1097/01.hs9.0000970884.72640.05" @default.
- W4385667029 hasPublicationYear "2023" @default.
- W4385667029 type Work @default.
- W4385667029 citedByCount "0" @default.
- W4385667029 crossrefType "journal-article" @default.
- W4385667029 hasAuthorship W4385667029A5004483141 @default.
- W4385667029 hasAuthorship W4385667029A5005412712 @default.
- W4385667029 hasAuthorship W4385667029A5006847089 @default.
- W4385667029 hasAuthorship W4385667029A5018244700 @default.
- W4385667029 hasAuthorship W4385667029A5021979312 @default.
- W4385667029 hasAuthorship W4385667029A5022501218 @default.
- W4385667029 hasAuthorship W4385667029A5031767581 @default.
- W4385667029 hasAuthorship W4385667029A5032066462 @default.
- W4385667029 hasAuthorship W4385667029A5039857961 @default.
- W4385667029 hasAuthorship W4385667029A5046225712 @default.
- W4385667029 hasAuthorship W4385667029A5057119273 @default.
- W4385667029 hasAuthorship W4385667029A5057806017 @default.
- W4385667029 hasAuthorship W4385667029A5074544398 @default.
- W4385667029 hasAuthorship W4385667029A5081086015 @default.
- W4385667029 hasAuthorship W4385667029A5081352122 @default.
- W4385667029 hasAuthorship W4385667029A5081798199 @default.
- W4385667029 hasAuthorship W4385667029A5092614003 @default.
- W4385667029 hasBestOaLocation W43856670291 @default.
- W4385667029 hasConcept C108583219 @default.
- W4385667029 hasConcept C119857082 @default.
- W4385667029 hasConcept C142724271 @default.
- W4385667029 hasConcept C154945302 @default.
- W4385667029 hasConcept C177264268 @default.
- W4385667029 hasConcept C199360897 @default.
- W4385667029 hasConcept C2776112149 @default.
- W4385667029 hasConcept C2780007613 @default.
- W4385667029 hasConcept C2780076729 @default.
- W4385667029 hasConcept C2781107747 @default.
- W4385667029 hasConcept C41008148 @default.
- W4385667029 hasConcept C50644808 @default.
- W4385667029 hasConcept C58471807 @default.
- W4385667029 hasConcept C71924100 @default.
- W4385667029 hasConceptScore W4385667029C108583219 @default.
- W4385667029 hasConceptScore W4385667029C119857082 @default.
- W4385667029 hasConceptScore W4385667029C142724271 @default.
- W4385667029 hasConceptScore W4385667029C154945302 @default.
- W4385667029 hasConceptScore W4385667029C177264268 @default.
- W4385667029 hasConceptScore W4385667029C199360897 @default.
- W4385667029 hasConceptScore W4385667029C2776112149 @default.
- W4385667029 hasConceptScore W4385667029C2780007613 @default.
- W4385667029 hasConceptScore W4385667029C2780076729 @default.
- W4385667029 hasConceptScore W4385667029C2781107747 @default.
- W4385667029 hasConceptScore W4385667029C41008148 @default.
- W4385667029 hasConceptScore W4385667029C50644808 @default.
- W4385667029 hasConceptScore W4385667029C58471807 @default.
- W4385667029 hasConceptScore W4385667029C71924100 @default.
- W4385667029 hasIssue "S3" @default.
- W4385667029 hasLocation W43856670291 @default.
- W4385667029 hasLocation W43856670292 @default.
- W4385667029 hasOpenAccess W4385667029 @default.
- W4385667029 hasPrimaryLocation W43856670291 @default.
- W4385667029 hasRelatedWork W1540971014 @default.
- W4385667029 hasRelatedWork W2008105940 @default.
- W4385667029 hasRelatedWork W2553304123 @default.
- W4385667029 hasRelatedWork W2970332576 @default.
- W4385667029 hasRelatedWork W2983002036 @default.
- W4385667029 hasRelatedWork W2990043937 @default.
- W4385667029 hasRelatedWork W3202087538 @default.
- W4385667029 hasRelatedWork W4283366672 @default.
- W4385667029 hasRelatedWork W4285733939 @default.
- W4385667029 hasRelatedWork W4302433366 @default.
- W4385667029 hasVolume "7" @default.
- W4385667029 isParatext "false" @default.
- W4385667029 isRetracted "false" @default.
- W4385667029 workType "article" @default.