Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385668410> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385668410 endingPage "259" @default.
- W4385668410 startingPage "242" @default.
- W4385668410 abstract "Lightweight deep learning is a subfield of artificial intelligence and machine learning that prioritises efficiency and compactness while developing deep learning models. It is ideal for low-powered mobile phones, embedded systems, and internet-of-things devices due to their speed and low latency. To make lightweight deep learning models, pruning and quantization are used to remove unnecessary parameters and reduce model weight accuracy. Transfer learning is used to fine-tune a pre-trained deep learning model on a smaller dataset. This chapter introduces the fundamentals of lightweight deep learning, including various lightweight models and their applications across different industries." @default.
- W4385668410 created "2023-08-09" @default.
- W4385668410 creator A5015074210 @default.
- W4385668410 creator A5042685278 @default.
- W4385668410 creator A5081069413 @default.
- W4385668410 creator A5092614324 @default.
- W4385668410 date "2023-08-08" @default.
- W4385668410 modified "2023-09-26" @default.
- W4385668410 title "Lightweight Deep Learning" @default.
- W4385668410 cites W2913425791 @default.
- W4385668410 cites W2962780374 @default.
- W4385668410 cites W2998028089 @default.
- W4385668410 cites W3033272228 @default.
- W4385668410 cites W3098057610 @default.
- W4385668410 cites W3123455674 @default.
- W4385668410 cites W3127990383 @default.
- W4385668410 cites W3184761438 @default.
- W4385668410 cites W3217767527 @default.
- W4385668410 cites W4221053294 @default.
- W4385668410 cites W4285799383 @default.
- W4385668410 cites W4313217521 @default.
- W4385668410 cites W4313328849 @default.
- W4385668410 cites W4313592591 @default.
- W4385668410 cites W4313646572 @default.
- W4385668410 cites W4313857678 @default.
- W4385668410 cites W4319004346 @default.
- W4385668410 cites W4319080122 @default.
- W4385668410 cites W4319660026 @default.
- W4385668410 cites W4319990128 @default.
- W4385668410 cites W4321793997 @default.
- W4385668410 cites W4364381156 @default.
- W4385668410 cites W4366086155 @default.
- W4385668410 cites W4366772722 @default.
- W4385668410 cites W4379260314 @default.
- W4385668410 cites W4385516904 @default.
- W4385668410 doi "https://doi.org/10.4018/978-1-6684-8386-2.ch012" @default.
- W4385668410 hasPublicationYear "2023" @default.
- W4385668410 type Work @default.
- W4385668410 citedByCount "0" @default.
- W4385668410 crossrefType "book-chapter" @default.
- W4385668410 hasAuthorship W4385668410A5015074210 @default.
- W4385668410 hasAuthorship W4385668410A5042685278 @default.
- W4385668410 hasAuthorship W4385668410A5081069413 @default.
- W4385668410 hasAuthorship W4385668410A5092614324 @default.
- W4385668410 hasConcept C108010975 @default.
- W4385668410 hasConcept C108583219 @default.
- W4385668410 hasConcept C119857082 @default.
- W4385668410 hasConcept C150899416 @default.
- W4385668410 hasConcept C154945302 @default.
- W4385668410 hasConcept C41008148 @default.
- W4385668410 hasConcept C6557445 @default.
- W4385668410 hasConcept C86803240 @default.
- W4385668410 hasConceptScore W4385668410C108010975 @default.
- W4385668410 hasConceptScore W4385668410C108583219 @default.
- W4385668410 hasConceptScore W4385668410C119857082 @default.
- W4385668410 hasConceptScore W4385668410C150899416 @default.
- W4385668410 hasConceptScore W4385668410C154945302 @default.
- W4385668410 hasConceptScore W4385668410C41008148 @default.
- W4385668410 hasConceptScore W4385668410C6557445 @default.
- W4385668410 hasConceptScore W4385668410C86803240 @default.
- W4385668410 hasLocation W43856684101 @default.
- W4385668410 hasOpenAccess W4385668410 @default.
- W4385668410 hasPrimaryLocation W43856684101 @default.
- W4385668410 hasRelatedWork W2889705046 @default.
- W4385668410 hasRelatedWork W2946016983 @default.
- W4385668410 hasRelatedWork W2960456850 @default.
- W4385668410 hasRelatedWork W3192840557 @default.
- W4385668410 hasRelatedWork W4223943233 @default.
- W4385668410 hasRelatedWork W4312200629 @default.
- W4385668410 hasRelatedWork W4317565044 @default.
- W4385668410 hasRelatedWork W4360585206 @default.
- W4385668410 hasRelatedWork W4380075502 @default.
- W4385668410 hasRelatedWork W4382286161 @default.
- W4385668410 isParatext "false" @default.
- W4385668410 isRetracted "false" @default.
- W4385668410 workType "book-chapter" @default.