Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385669567> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4385669567 endingPage "S1112" @default.
- W4385669567 startingPage "S1111" @default.
- W4385669567 abstract "Introduction Every year at least one million people die by suicide, with major depressive disorder (MDD) being one of the major causes of suicide deaths. Current suicide risk assessments rely on subjective information, are time consuming, low predictive, and poorly reliable. Thus, finding objective biomarkers of suicidality is crucial to move clinical practice towards a precision psychiatry framework, enhancing suicide risk detection and prevention for MDD. Objectives The present study aimed at applying machine learning (ML) algorithms on both grey matter and white-matter voxel-wise data to discriminate MDD suicide attempters (SA) from non-attempters (nSA). Methods 91 currently depressed MDD patients (24 SA, 67 nSA) underwent a structural MRI session. T1-weighted images and diffusion tensor imaging scans were respectively pre-processed using Computational Atlas Toolbox 12 (CAT12) and spatial tract-based statistics (TBSS) on FSL, to obtain both voxel-based morphometry (VBM) and fractional anisotropy (FA) measures. Three classification models were built, entering whole-brain VBM and FA maps alone into a Support Vector Machine (SVM) and combining both modalities into a Multiple Kernel Learning (MKL) algorithm. All models were trained through a 5-fold nested cross-validation with subsampling to calculate reliable estimates of balanced accuracy, specificity, sensitivity, and area under the receiver operator curve (AUC). Results Models’ performances are summarized in Table 1. Table 1. Models’ performances. Input features Algorithm Specificity Sensitivity Balanced accuracy AUC VBM SVM 55.00% 50.00% 52.50% 0.55 FA SVM 72.00% 54.00% 63.00% 0.62 VBM and FA MKL 68.00% 54.00% 61.00% 0.58 Abbreviations: AUC, area under the receiver operator curve; FA, fractional anisotropy; VBM, voxel-based morphometry. Conclusions Overall, although overcoming the random classification accuracy (i.e., 50%), performances of all models classifying SA and nSA MDD patients were moderate, possibly due to the imbalanced numerosity of classes, with SVM on FA reaching the highest accuracy. Thus, future studies may enlarge the sample and add different features (e.g., functional neuroimaging data) to develop an objective and reliable predictive model to assess and hence prevent suicide risk among MDD patients. Disclosure of Interest None Declared" @default.
- W4385669567 created "2023-08-09" @default.
- W4385669567 creator A5002124548 @default.
- W4385669567 creator A5010192862 @default.
- W4385669567 creator A5042538182 @default.
- W4385669567 creator A5054050446 @default.
- W4385669567 creator A5060185931 @default.
- W4385669567 creator A5062182983 @default.
- W4385669567 creator A5074767968 @default.
- W4385669567 creator A5075935440 @default.
- W4385669567 creator A5076916358 @default.
- W4385669567 creator A5078146896 @default.
- W4385669567 creator A5079348738 @default.
- W4385669567 date "2023-03-01" @default.
- W4385669567 modified "2023-10-18" @default.
- W4385669567 title "Predicting Suicide Attempts among Major Depressive Disorder Patients with Structural Neuroimaging: A Machine Learning Approach" @default.
- W4385669567 doi "https://doi.org/10.1192/j.eurpsy.2023.2364" @default.
- W4385669567 hasPublicationYear "2023" @default.
- W4385669567 type Work @default.
- W4385669567 citedByCount "0" @default.
- W4385669567 crossrefType "journal-article" @default.
- W4385669567 hasAuthorship W4385669567A5002124548 @default.
- W4385669567 hasAuthorship W4385669567A5010192862 @default.
- W4385669567 hasAuthorship W4385669567A5042538182 @default.
- W4385669567 hasAuthorship W4385669567A5054050446 @default.
- W4385669567 hasAuthorship W4385669567A5060185931 @default.
- W4385669567 hasAuthorship W4385669567A5062182983 @default.
- W4385669567 hasAuthorship W4385669567A5074767968 @default.
- W4385669567 hasAuthorship W4385669567A5075935440 @default.
- W4385669567 hasAuthorship W4385669567A5076916358 @default.
- W4385669567 hasAuthorship W4385669567A5078146896 @default.
- W4385669567 hasAuthorship W4385669567A5079348738 @default.
- W4385669567 hasBestOaLocation W43856695671 @default.
- W4385669567 hasConcept C118552586 @default.
- W4385669567 hasConcept C119857082 @default.
- W4385669567 hasConcept C12267149 @default.
- W4385669567 hasConcept C126838900 @default.
- W4385669567 hasConcept C143409427 @default.
- W4385669567 hasConcept C149550507 @default.
- W4385669567 hasConcept C154945302 @default.
- W4385669567 hasConcept C15744967 @default.
- W4385669567 hasConcept C190385971 @default.
- W4385669567 hasConcept C2776641880 @default.
- W4385669567 hasConcept C2780051608 @default.
- W4385669567 hasConcept C2780733359 @default.
- W4385669567 hasConcept C3017944768 @default.
- W4385669567 hasConcept C41008148 @default.
- W4385669567 hasConcept C54170458 @default.
- W4385669567 hasConcept C58471807 @default.
- W4385669567 hasConcept C58693492 @default.
- W4385669567 hasConcept C71924100 @default.
- W4385669567 hasConcept C89916169 @default.
- W4385669567 hasConcept C99454951 @default.
- W4385669567 hasConceptScore W4385669567C118552586 @default.
- W4385669567 hasConceptScore W4385669567C119857082 @default.
- W4385669567 hasConceptScore W4385669567C12267149 @default.
- W4385669567 hasConceptScore W4385669567C126838900 @default.
- W4385669567 hasConceptScore W4385669567C143409427 @default.
- W4385669567 hasConceptScore W4385669567C149550507 @default.
- W4385669567 hasConceptScore W4385669567C154945302 @default.
- W4385669567 hasConceptScore W4385669567C15744967 @default.
- W4385669567 hasConceptScore W4385669567C190385971 @default.
- W4385669567 hasConceptScore W4385669567C2776641880 @default.
- W4385669567 hasConceptScore W4385669567C2780051608 @default.
- W4385669567 hasConceptScore W4385669567C2780733359 @default.
- W4385669567 hasConceptScore W4385669567C3017944768 @default.
- W4385669567 hasConceptScore W4385669567C41008148 @default.
- W4385669567 hasConceptScore W4385669567C54170458 @default.
- W4385669567 hasConceptScore W4385669567C58471807 @default.
- W4385669567 hasConceptScore W4385669567C58693492 @default.
- W4385669567 hasConceptScore W4385669567C71924100 @default.
- W4385669567 hasConceptScore W4385669567C89916169 @default.
- W4385669567 hasConceptScore W4385669567C99454951 @default.
- W4385669567 hasIssue "S1" @default.
- W4385669567 hasLocation W43856695671 @default.
- W4385669567 hasOpenAccess W4385669567 @default.
- W4385669567 hasPrimaryLocation W43856695671 @default.
- W4385669567 hasRelatedWork W1968602556 @default.
- W4385669567 hasRelatedWork W1977223300 @default.
- W4385669567 hasRelatedWork W1994711829 @default.
- W4385669567 hasRelatedWork W1996541855 @default.
- W4385669567 hasRelatedWork W2090305223 @default.
- W4385669567 hasRelatedWork W2120141888 @default.
- W4385669567 hasRelatedWork W2137679584 @default.
- W4385669567 hasRelatedWork W2352789613 @default.
- W4385669567 hasRelatedWork W2937631562 @default.
- W4385669567 hasRelatedWork W3195168932 @default.
- W4385669567 hasVolume "66" @default.
- W4385669567 isParatext "false" @default.
- W4385669567 isRetracted "false" @default.
- W4385669567 workType "article" @default.