Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385690804> ?p ?o ?g. }
- W4385690804 endingPage "130085" @default.
- W4385690804 startingPage "130085" @default.
- W4385690804 abstract "The continuous ecological river supplement has enhanced the recharge of groundwater in the North China Plain, and alleviated the depletion of groundwater resources. In the study of ecological river supplement, efficient quantitative prediction of groundwater level (GWL) and groundwater storage (GWS) is a crucial issue. To predict GWL and estimate the variation of GWS in the North China Plain, this paper uses the attention-gated recurrent unit (Attention-GRU) model as a primary method and coefficient of determination (R2) and root mean square error (RMSE) as the indices to evaluate model performance. Compared to traditional recursive neural network (RNN) and long short-term memory (LSTM) model, Attention-GRU model demonstrated an outstanding performance, as the RMSE is respectively 0.5m and 2.28m in the training and testing periods, and the R2 is 0.87 and 0.68. With the usage of the convolution neural network (CNN) model, the specific yield field was continuously updated from 2018 to 2021. The average annual variation of GWS estimated by this method is respectively -15.19×104m3, -13.29×104m3, 2.55×104m3 and 100.05×104m3 from 2018 to 2021 in the North China Plain. Besides, the semiannual GWS variation, calculated using the updated specific yield, is -59.56×104m3 in 2022. Furthermore, the influence of the reference time length and the driving factors were evaluated. Results show that the precipitation, evaporation and human activities are the most important temporal features influencing the changes in GWS, and the changes in different areas have varying local characteristics. In the piedmont plain, river ecological recharge played a crucial role for groundwater storage recovery. When it moved to the coastal plain, the contribution rate of recharge decreased from 23% to 11%. In addition, the optimal reference time length used in Attention-GRU model varies in different hydrogeology divisions, and the specific yield variation would result in substantial differences for the GWS estimation under different climate conditions and human activities. The systematic framework proposed in this paper is effective for evaluating and predicting GWL and GWS, and thereby able to support the management and development of groundwater, and provide a guidance for ecological river supplement." @default.
- W4385690804 created "2023-08-10" @default.
- W4385690804 creator A5008319802 @default.
- W4385690804 creator A5008377523 @default.
- W4385690804 creator A5010320915 @default.
- W4385690804 creator A5014076676 @default.
- W4385690804 creator A5025213974 @default.
- W4385690804 creator A5031150094 @default.
- W4385690804 creator A5073950133 @default.
- W4385690804 date "2023-10-01" @default.
- W4385690804 modified "2023-10-16" @default.
- W4385690804 title "Evaluation of shallow groundwater dynamics after water supplement in North China Plain based on attention-GRU model" @default.
- W4385690804 cites W1515094889 @default.
- W4385690804 cites W1525055478 @default.
- W4385690804 cites W1885871731 @default.
- W4385690804 cites W1897549261 @default.
- W4385690804 cites W192530852 @default.
- W4385690804 cites W1935773568 @default.
- W4385690804 cites W1937577420 @default.
- W4385690804 cites W1975351276 @default.
- W4385690804 cites W1982546148 @default.
- W4385690804 cites W1999965891 @default.
- W4385690804 cites W2005309788 @default.
- W4385690804 cites W2043256179 @default.
- W4385690804 cites W2047228941 @default.
- W4385690804 cites W2064675550 @default.
- W4385690804 cites W2066369121 @default.
- W4385690804 cites W2109368888 @default.
- W4385690804 cites W2110485445 @default.
- W4385690804 cites W2111991669 @default.
- W4385690804 cites W2122854726 @default.
- W4385690804 cites W2131774270 @default.
- W4385690804 cites W2315230552 @default.
- W4385690804 cites W2332894145 @default.
- W4385690804 cites W2409939260 @default.
- W4385690804 cites W2505811704 @default.
- W4385690804 cites W2535024826 @default.
- W4385690804 cites W2750213292 @default.
- W4385690804 cites W2765982206 @default.
- W4385690804 cites W2784733489 @default.
- W4385690804 cites W2800140122 @default.
- W4385690804 cites W2802436364 @default.
- W4385690804 cites W2807482674 @default.
- W4385690804 cites W2884738788 @default.
- W4385690804 cites W2907847652 @default.
- W4385690804 cites W2907891425 @default.
- W4385690804 cites W2911964244 @default.
- W4385690804 cites W2942047515 @default.
- W4385690804 cites W2943844017 @default.
- W4385690804 cites W2962949934 @default.
- W4385690804 cites W2978245507 @default.
- W4385690804 cites W2995149074 @default.
- W4385690804 cites W2998268303 @default.
- W4385690804 cites W2999667975 @default.
- W4385690804 cites W3005638377 @default.
- W4385690804 cites W3009752764 @default.
- W4385690804 cites W3026048286 @default.
- W4385690804 cites W3029817724 @default.
- W4385690804 cites W3035058851 @default.
- W4385690804 cites W3044661808 @default.
- W4385690804 cites W3045398433 @default.
- W4385690804 cites W3097451558 @default.
- W4385690804 cites W3100968477 @default.
- W4385690804 cites W3102476541 @default.
- W4385690804 cites W3106370744 @default.
- W4385690804 cites W3120998733 @default.
- W4385690804 cites W3195469126 @default.
- W4385690804 cites W3210449503 @default.
- W4385690804 cites W3212212952 @default.
- W4385690804 cites W4200116793 @default.
- W4385690804 cites W4200365034 @default.
- W4385690804 cites W4205248192 @default.
- W4385690804 cites W4206023190 @default.
- W4385690804 cites W4206520240 @default.
- W4385690804 cites W4212954142 @default.
- W4385690804 cites W4213454536 @default.
- W4385690804 cites W4214723362 @default.
- W4385690804 cites W4220727972 @default.
- W4385690804 cites W4220951885 @default.
- W4385690804 cites W4229377731 @default.
- W4385690804 cites W4316690329 @default.
- W4385690804 doi "https://doi.org/10.1016/j.jhydrol.2023.130085" @default.
- W4385690804 hasPublicationYear "2023" @default.
- W4385690804 type Work @default.
- W4385690804 citedByCount "0" @default.
- W4385690804 crossrefType "journal-article" @default.
- W4385690804 hasAuthorship W4385690804A5008319802 @default.
- W4385690804 hasAuthorship W4385690804A5008377523 @default.
- W4385690804 hasAuthorship W4385690804A5010320915 @default.
- W4385690804 hasAuthorship W4385690804A5014076676 @default.
- W4385690804 hasAuthorship W4385690804A5025213974 @default.
- W4385690804 hasAuthorship W4385690804A5031150094 @default.
- W4385690804 hasAuthorship W4385690804A5073950133 @default.
- W4385690804 hasConcept C105795698 @default.
- W4385690804 hasConcept C107054158 @default.
- W4385690804 hasConcept C127313418 @default.
- W4385690804 hasConcept C139945424 @default.
- W4385690804 hasConcept C153294291 @default.