Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385690862> ?p ?o ?g. }
- W4385690862 abstract "Rapidly and accurately extracting built-up areas is an essential prerequisite of urbanization research. There have been many studies on the extraction of built-up areas using remote sensing technologies. So far, few studies have been conducted to evaluate the applicability of the deep learning method to extract built-up areas under the condition that only nighttime light (NTL) data are used. This study proposed a deep learning method to extract the built-up areas using NTL data, and applied the method to analyze the spatial and temporal changes of the built-up areas in Chinese two urban agglomerations from 2000 to 2020. The results show that the U-Net deep learning method can be used to extract built-up areas efficiently under the condition that only NTL data are used. The proposed method was able to improve the accuracy of built-up area extraction significantly compared to the existing method. For the extraction of built-up areas in large regions with long time series, the proposed method can facilitate the work and improve the processing efficiency. The gravity centre of the built-up areas in the Central Plains Urban Agglomeration migrated south-eastward, and the gravity centre of the built-up areas in the Shandong Peninsula Urban Agglomeration migrated south-westward, with these gravity centres gradually approaching the geometric centres of the corresponding urban agglomerations. The built-up areas in the Central Plains and Shandong Peninsula Urban Agglomerations grew rapidly, increasing by 4.14 times and 3.73 times from 2000 to 2020, respectively. The built-up areas in the Central Plains Urban Agglomeration expanded faster, while the urban development degree of the Shandong Peninsula Urban Agglomeration was higher. The urban distributions and development modes of these two urban agglomerations were quite different. The Central Plains Urban Agglomeration tended to further agglomerate, while the Shandong Peninsula Urban Agglomeration tended to disperse." @default.
- W4385690862 created "2023-08-10" @default.
- W4385690862 creator A5053170988 @default.
- W4385690862 creator A5053786338 @default.
- W4385690862 creator A5058091201 @default.
- W4385690862 creator A5073070877 @default.
- W4385690862 date "2023-08-16" @default.
- W4385690862 modified "2023-10-17" @default.
- W4385690862 title "Automatic extraction of built-up areas in Chinese urban agglomerations based on the deep learning method using NTL data" @default.
- W4385690862 cites W1157380099 @default.
- W4385690862 cites W1800390669 @default.
- W4385690862 cites W1901129140 @default.
- W4385690862 cites W1975642551 @default.
- W4385690862 cites W1983564473 @default.
- W4385690862 cites W1989855258 @default.
- W4385690862 cites W1991995284 @default.
- W4385690862 cites W1996534964 @default.
- W4385690862 cites W1999237302 @default.
- W4385690862 cites W2001075407 @default.
- W4385690862 cites W2004126227 @default.
- W4385690862 cites W2008645757 @default.
- W4385690862 cites W2023693832 @default.
- W4385690862 cites W2025943354 @default.
- W4385690862 cites W2035021121 @default.
- W4385690862 cites W2038819298 @default.
- W4385690862 cites W2050571985 @default.
- W4385690862 cites W2069624290 @default.
- W4385690862 cites W2085317936 @default.
- W4385690862 cites W2090242371 @default.
- W4385690862 cites W2091793895 @default.
- W4385690862 cites W2092909501 @default.
- W4385690862 cites W2137043027 @default.
- W4385690862 cites W2142487694 @default.
- W4385690862 cites W2159789954 @default.
- W4385690862 cites W2166315923 @default.
- W4385690862 cites W2172120354 @default.
- W4385690862 cites W2254584107 @default.
- W4385690862 cites W2285272653 @default.
- W4385690862 cites W2315473094 @default.
- W4385690862 cites W2335925422 @default.
- W4385690862 cites W2342696299 @default.
- W4385690862 cites W2529139408 @default.
- W4385690862 cites W2570881823 @default.
- W4385690862 cites W2572257651 @default.
- W4385690862 cites W2591877092 @default.
- W4385690862 cites W2770076792 @default.
- W4385690862 cites W2776072592 @default.
- W4385690862 cites W2799735832 @default.
- W4385690862 cites W2810433150 @default.
- W4385690862 cites W2887351830 @default.
- W4385690862 cites W2892489770 @default.
- W4385690862 cites W2898070142 @default.
- W4385690862 cites W2898669139 @default.
- W4385690862 cites W2902436637 @default.
- W4385690862 cites W2904271136 @default.
- W4385690862 cites W2905908047 @default.
- W4385690862 cites W2911965470 @default.
- W4385690862 cites W2919115771 @default.
- W4385690862 cites W2919234612 @default.
- W4385690862 cites W2927743865 @default.
- W4385690862 cites W2929921519 @default.
- W4385690862 cites W2968465582 @default.
- W4385690862 cites W2969571546 @default.
- W4385690862 cites W2991437828 @default.
- W4385690862 cites W2994128586 @default.
- W4385690862 cites W2996758582 @default.
- W4385690862 cites W3008439211 @default.
- W4385690862 cites W3043543431 @default.
- W4385690862 cites W3089919509 @default.
- W4385690862 cites W3092797615 @default.
- W4385690862 cites W3110201684 @default.
- W4385690862 cites W3187269307 @default.
- W4385690862 cites W3198394854 @default.
- W4385690862 cites W3205480726 @default.
- W4385690862 cites W3210940126 @default.
- W4385690862 cites W4205289408 @default.
- W4385690862 cites W4210335523 @default.
- W4385690862 cites W4303953726 @default.
- W4385690862 cites W4320920573 @default.
- W4385690862 cites W4376595762 @default.
- W4385690862 cites W3150806421 @default.
- W4385690862 doi "https://doi.org/10.1080/10106049.2023.2246939" @default.
- W4385690862 hasPublicationYear "2023" @default.
- W4385690862 type Work @default.
- W4385690862 citedByCount "0" @default.
- W4385690862 crossrefType "journal-article" @default.
- W4385690862 hasAuthorship W4385690862A5053170988 @default.
- W4385690862 hasAuthorship W4385690862A5053786338 @default.
- W4385690862 hasAuthorship W4385690862A5058091201 @default.
- W4385690862 hasAuthorship W4385690862A5073070877 @default.
- W4385690862 hasBestOaLocation W43856908621 @default.
- W4385690862 hasConcept C108583219 @default.
- W4385690862 hasConcept C123588078 @default.
- W4385690862 hasConcept C127413603 @default.
- W4385690862 hasConcept C147176958 @default.
- W4385690862 hasConcept C154611951 @default.
- W4385690862 hasConcept C154945302 @default.
- W4385690862 hasConcept C162324750 @default.
- W4385690862 hasConcept C166957645 @default.
- W4385690862 hasConcept C185592680 @default.