Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385691750> ?p ?o ?g. }
- W4385691750 endingPage "116739" @default.
- W4385691750 startingPage "116739" @default.
- W4385691750 abstract "Machine learning (ML) techniques have been recently adopted in engineering practice to define the relationship between seismic intensity measure (IM) and structural damage measure (DM) based on a limited set of numerical simulations. However, they only offer deterministic prediction, which failing to reflect the aleatoric uncertainty related to input variables (e.g. seismic excitation and structural properties) and the epistemic uncertainty associated with modeling. This paper proposes a probabilistic ML method combined with ground motion clustering for seismic fragility analysis of structures. In the probabilistic ML method, by the natural gradient boosting (NGBoost), the conditional probability distribution can be evaluated for each structural response instead of producing point estimation. In addition, ground motion clustering is based on the time series K-means, which can capture the hidden features and select the representative subset of ground motions. The proposed framework was implemented for seismic fragility analysis of a typical 3-span, 6-storey reinforced concrete (RC) frame system. Analysis results indicated that the point estimation accuracy of the NGBoost was comparable to that based on excellent deterministic ML techniques, e.g. artificial neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost). Moreover, the probabilistic prediction can efficiently provide the conditional probability of exceeding a damaged state in the structure given an IM level, eliminating the need for additional input of uncertainties from structural properties in traditional ML methods. Ultimately, the cluster-based ground motion selection reduced the model uncertainty and improves the prediction accuracy of the probabilistic ML model." @default.
- W4385691750 created "2023-08-10" @default.
- W4385691750 creator A5027384528 @default.
- W4385691750 creator A5039985182 @default.
- W4385691750 creator A5046793178 @default.
- W4385691750 creator A5068561593 @default.
- W4385691750 creator A5090186375 @default.
- W4385691750 date "2023-11-01" @default.
- W4385691750 modified "2023-10-16" @default.
- W4385691750 title "Efficient seismic fragility analysis method utilizing ground motion clustering and probabilistic machine learning" @default.
- W4385691750 cites W1494192115 @default.
- W4385691750 cites W1678356000 @default.
- W4385691750 cites W2017630868 @default.
- W4385691750 cites W2031251974 @default.
- W4385691750 cites W2042762031 @default.
- W4385691750 cites W2070238662 @default.
- W4385691750 cites W2082179468 @default.
- W4385691750 cites W2109563136 @default.
- W4385691750 cites W2129178344 @default.
- W4385691750 cites W2167996923 @default.
- W4385691750 cites W2295945403 @default.
- W4385691750 cites W2736461267 @default.
- W4385691750 cites W2782500509 @default.
- W4385691750 cites W2788697198 @default.
- W4385691750 cites W2789135478 @default.
- W4385691750 cites W2796720979 @default.
- W4385691750 cites W2805328368 @default.
- W4385691750 cites W2911964244 @default.
- W4385691750 cites W2930890426 @default.
- W4385691750 cites W2946752227 @default.
- W4385691750 cites W2963587403 @default.
- W4385691750 cites W2964155733 @default.
- W4385691750 cites W2971628638 @default.
- W4385691750 cites W2999473454 @default.
- W4385691750 cites W3011360312 @default.
- W4385691750 cites W3012216192 @default.
- W4385691750 cites W3016906269 @default.
- W4385691750 cites W3037903766 @default.
- W4385691750 cites W3102476541 @default.
- W4385691750 cites W3125499280 @default.
- W4385691750 cites W3129390961 @default.
- W4385691750 cites W3133841051 @default.
- W4385691750 cites W3136631225 @default.
- W4385691750 cites W4221081531 @default.
- W4385691750 cites W4289635930 @default.
- W4385691750 cites W4293254408 @default.
- W4385691750 cites W4303940544 @default.
- W4385691750 cites W4307408819 @default.
- W4385691750 cites W4310748293 @default.
- W4385691750 cites W4313706061 @default.
- W4385691750 cites W4320169603 @default.
- W4385691750 cites W4323636626 @default.
- W4385691750 doi "https://doi.org/10.1016/j.engstruct.2023.116739" @default.
- W4385691750 hasPublicationYear "2023" @default.
- W4385691750 type Work @default.
- W4385691750 citedByCount "0" @default.
- W4385691750 crossrefType "journal-article" @default.
- W4385691750 hasAuthorship W4385691750A5027384528 @default.
- W4385691750 hasAuthorship W4385691750A5039985182 @default.
- W4385691750 hasAuthorship W4385691750A5046793178 @default.
- W4385691750 hasAuthorship W4385691750A5068561593 @default.
- W4385691750 hasAuthorship W4385691750A5090186375 @default.
- W4385691750 hasConcept C105795698 @default.
- W4385691750 hasConcept C11413529 @default.
- W4385691750 hasConcept C147789679 @default.
- W4385691750 hasConcept C154945302 @default.
- W4385691750 hasConcept C169258074 @default.
- W4385691750 hasConcept C185592680 @default.
- W4385691750 hasConcept C33923547 @default.
- W4385691750 hasConcept C41008148 @default.
- W4385691750 hasConcept C44492722 @default.
- W4385691750 hasConcept C46686674 @default.
- W4385691750 hasConcept C49937458 @default.
- W4385691750 hasConcept C50644808 @default.
- W4385691750 hasConcept C70153297 @default.
- W4385691750 hasConcept C73555534 @default.
- W4385691750 hasConcept C80191262 @default.
- W4385691750 hasConceptScore W4385691750C105795698 @default.
- W4385691750 hasConceptScore W4385691750C11413529 @default.
- W4385691750 hasConceptScore W4385691750C147789679 @default.
- W4385691750 hasConceptScore W4385691750C154945302 @default.
- W4385691750 hasConceptScore W4385691750C169258074 @default.
- W4385691750 hasConceptScore W4385691750C185592680 @default.
- W4385691750 hasConceptScore W4385691750C33923547 @default.
- W4385691750 hasConceptScore W4385691750C41008148 @default.
- W4385691750 hasConceptScore W4385691750C44492722 @default.
- W4385691750 hasConceptScore W4385691750C46686674 @default.
- W4385691750 hasConceptScore W4385691750C49937458 @default.
- W4385691750 hasConceptScore W4385691750C50644808 @default.
- W4385691750 hasConceptScore W4385691750C70153297 @default.
- W4385691750 hasConceptScore W4385691750C73555534 @default.
- W4385691750 hasConceptScore W4385691750C80191262 @default.
- W4385691750 hasFunder F4320321001 @default.
- W4385691750 hasFunder F4320322769 @default.
- W4385691750 hasFunder F4320335777 @default.
- W4385691750 hasLocation W43856917501 @default.
- W4385691750 hasOpenAccess W4385691750 @default.
- W4385691750 hasPrimaryLocation W43856917501 @default.