Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385691804> ?p ?o ?g. }
- W4385691804 endingPage "102657" @default.
- W4385691804 startingPage "102657" @default.
- W4385691804 abstract "Purpose Different methods are available to identify haematopoietically active bone marrow (ActBM). However, their use can be challenging for radiotherapy routine treatments, since they require specific equipment and dedicated time. A machine learning (ML) approach, based on radiomic features as inputs to three different classifiers, was applied to computed tomography (CT) images to identify haematopoietically active bone marrow in anal cancer patients. Methods A total of 40 patients was assigned to the construction set (training set + test set). Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) images were used to detect the active part of the pelvic bone marrow (ActPBM) and stored as ground-truth for three subregions: iliac, lower pelvis and lumbosacral bone marrow (ActIBM, ActLPBM, ActLSBM). Three parameters were used for the correspondence analyses between 18FDG-PET and ML classifiers: DICE index, Precision and Recall. Results For the 40-patient cohort, median values [min; max] of the Dice index were 0.69 [0.20; 0.84], 0.76 [0.25; 0.89], and 0.36 [0.15; 0.67] for ActIBM, ActLSBM, and ActLPBM, respectively. The Precision/Recall (P/R) ratio median value for the ActLPBM structure was 0.59 [0.20; 1.84] (over segmentation), while for the other two subregions the P/R ratio median has values of 1.249 [0.43; 4.15] for ActIBM and 1.093 [0.24; 1.91] for ActLSBM (under segmentation). Conclusion A satisfactory degree of overlap compared to 18FDG-PET was found for 2 out of the 3 subregions within pelvic bones. Further optimization and generalization of the process is required before clinical implementation." @default.
- W4385691804 created "2023-08-10" @default.
- W4385691804 creator A5003373369 @default.
- W4385691804 creator A5011367557 @default.
- W4385691804 creator A5012791314 @default.
- W4385691804 creator A5014215750 @default.
- W4385691804 creator A5019407140 @default.
- W4385691804 creator A5021935101 @default.
- W4385691804 creator A5044594804 @default.
- W4385691804 creator A5060509370 @default.
- W4385691804 creator A5063826855 @default.
- W4385691804 creator A5072572049 @default.
- W4385691804 creator A5090832564 @default.
- W4385691804 creator A5092617619 @default.
- W4385691804 date "2023-09-01" @default.
- W4385691804 modified "2023-09-26" @default.
- W4385691804 title "Active bone marrow segmentation based on computed tomography imaging in anal cancer patients: A machine-learning-based proof of concept" @default.
- W4385691804 cites W1964283912 @default.
- W4385691804 cites W2066208236 @default.
- W4385691804 cites W2111179580 @default.
- W4385691804 cites W2129300711 @default.
- W4385691804 cites W2190354289 @default.
- W4385691804 cites W2259355320 @default.
- W4385691804 cites W2269545103 @default.
- W4385691804 cites W2317305109 @default.
- W4385691804 cites W2416810470 @default.
- W4385691804 cites W2587083234 @default.
- W4385691804 cites W2589469859 @default.
- W4385691804 cites W2615654774 @default.
- W4385691804 cites W2750756488 @default.
- W4385691804 cites W2767115837 @default.
- W4385691804 cites W2903356035 @default.
- W4385691804 cites W2904364620 @default.
- W4385691804 cites W2905352294 @default.
- W4385691804 cites W3019441679 @default.
- W4385691804 cites W3033944192 @default.
- W4385691804 cites W3038821049 @default.
- W4385691804 cites W3043125719 @default.
- W4385691804 cites W3046220160 @default.
- W4385691804 cites W3102474308 @default.
- W4385691804 cites W3157235579 @default.
- W4385691804 cites W3161613137 @default.
- W4385691804 cites W3163944191 @default.
- W4385691804 cites W3173506613 @default.
- W4385691804 cites W3197181177 @default.
- W4385691804 cites W3200193684 @default.
- W4385691804 cites W4207071932 @default.
- W4385691804 cites W4280545198 @default.
- W4385691804 doi "https://doi.org/10.1016/j.ejmp.2023.102657" @default.
- W4385691804 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37567068" @default.
- W4385691804 hasPublicationYear "2023" @default.
- W4385691804 type Work @default.
- W4385691804 citedByCount "0" @default.
- W4385691804 crossrefType "journal-article" @default.
- W4385691804 hasAuthorship W4385691804A5003373369 @default.
- W4385691804 hasAuthorship W4385691804A5011367557 @default.
- W4385691804 hasAuthorship W4385691804A5012791314 @default.
- W4385691804 hasAuthorship W4385691804A5014215750 @default.
- W4385691804 hasAuthorship W4385691804A5019407140 @default.
- W4385691804 hasAuthorship W4385691804A5021935101 @default.
- W4385691804 hasAuthorship W4385691804A5044594804 @default.
- W4385691804 hasAuthorship W4385691804A5060509370 @default.
- W4385691804 hasAuthorship W4385691804A5063826855 @default.
- W4385691804 hasAuthorship W4385691804A5072572049 @default.
- W4385691804 hasAuthorship W4385691804A5090832564 @default.
- W4385691804 hasAuthorship W4385691804A5092617619 @default.
- W4385691804 hasConcept C121608353 @default.
- W4385691804 hasConcept C126322002 @default.
- W4385691804 hasConcept C126838900 @default.
- W4385691804 hasConcept C142724271 @default.
- W4385691804 hasConcept C154945302 @default.
- W4385691804 hasConcept C2775842073 @default.
- W4385691804 hasConcept C2778357063 @default.
- W4385691804 hasConcept C2779840525 @default.
- W4385691804 hasConcept C2780007613 @default.
- W4385691804 hasConcept C2989005 @default.
- W4385691804 hasConcept C41008148 @default.
- W4385691804 hasConcept C71924100 @default.
- W4385691804 hasConcept C89600930 @default.
- W4385691804 hasConceptScore W4385691804C121608353 @default.
- W4385691804 hasConceptScore W4385691804C126322002 @default.
- W4385691804 hasConceptScore W4385691804C126838900 @default.
- W4385691804 hasConceptScore W4385691804C142724271 @default.
- W4385691804 hasConceptScore W4385691804C154945302 @default.
- W4385691804 hasConceptScore W4385691804C2775842073 @default.
- W4385691804 hasConceptScore W4385691804C2778357063 @default.
- W4385691804 hasConceptScore W4385691804C2779840525 @default.
- W4385691804 hasConceptScore W4385691804C2780007613 @default.
- W4385691804 hasConceptScore W4385691804C2989005 @default.
- W4385691804 hasConceptScore W4385691804C41008148 @default.
- W4385691804 hasConceptScore W4385691804C71924100 @default.
- W4385691804 hasConceptScore W4385691804C89600930 @default.
- W4385691804 hasLocation W43856918041 @default.
- W4385691804 hasLocation W43856918042 @default.
- W4385691804 hasOpenAccess W4385691804 @default.
- W4385691804 hasPrimaryLocation W43856918041 @default.
- W4385691804 hasRelatedWork W1595368769 @default.
- W4385691804 hasRelatedWork W2049214470 @default.