Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385694482> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385694482 abstract "A large number of well-maintained datasets are needed for the diagnosis and assessment of the severity of the new disease (COVID-19) using chest radiographs (CXR). To achieve the best results, current methods for quantifying severity require complex methods and large datasets for training. Medical professionals must have access to systems that can quickly and automatically identify COVID-19 patients and predict severity. In this work, we measure the severity of COVID-19 using an efficient neural network consisting of a CNN backbone and a regression head to automatically predict lung infection scores. In addition, we investigate the efficiency of some augmentation methods to increase the potential of the deep model. A comparative study was conducted using several state-of-the-art deep learning methods on the public RALO dataset. The experimental results show that our model has the potential to perform best on severity quantification tasks and demonstrate the impact of lung segmentation on performance." @default.
- W4385694482 created "2023-08-10" @default.
- W4385694482 creator A5001818509 @default.
- W4385694482 creator A5036304904 @default.
- W4385694482 creator A5051025413 @default.
- W4385694482 creator A5081042741 @default.
- W4385694482 date "2023-07-02" @default.
- W4385694482 modified "2023-09-27" @default.
- W4385694482 title "Automatic Quantification of Lung Infection Severity in Chest X-ray Images" @default.
- W4385694482 cites W2097117768 @default.
- W4385694482 cites W2194775991 @default.
- W4385694482 cites W2794284562 @default.
- W4385694482 cites W2982083293 @default.
- W4385694482 cites W2992308087 @default.
- W4385694482 cites W3006627382 @default.
- W4385694482 cites W3013130152 @default.
- W4385694482 cites W3013547516 @default.
- W4385694482 cites W3015292413 @default.
- W4385694482 cites W3017116151 @default.
- W4385694482 cites W3021137017 @default.
- W4385694482 cites W3023402713 @default.
- W4385694482 cites W3024853795 @default.
- W4385694482 cites W3025015013 @default.
- W4385694482 cites W3039745624 @default.
- W4385694482 cites W3045464882 @default.
- W4385694482 cites W3045975320 @default.
- W4385694482 cites W3088226460 @default.
- W4385694482 cites W3104810384 @default.
- W4385694482 cites W3112660304 @default.
- W4385694482 cites W3138516171 @default.
- W4385694482 cites W3139111558 @default.
- W4385694482 cites W3141637546 @default.
- W4385694482 cites W3158390466 @default.
- W4385694482 cites W3167147947 @default.
- W4385694482 cites W4230649743 @default.
- W4385694482 doi "https://doi.org/10.1109/ssp53291.2023.10207986" @default.
- W4385694482 hasPublicationYear "2023" @default.
- W4385694482 type Work @default.
- W4385694482 citedByCount "0" @default.
- W4385694482 crossrefType "proceedings-article" @default.
- W4385694482 hasAuthorship W4385694482A5001818509 @default.
- W4385694482 hasAuthorship W4385694482A5036304904 @default.
- W4385694482 hasAuthorship W4385694482A5051025413 @default.
- W4385694482 hasAuthorship W4385694482A5081042741 @default.
- W4385694482 hasConcept C108583219 @default.
- W4385694482 hasConcept C119857082 @default.
- W4385694482 hasConcept C126322002 @default.
- W4385694482 hasConcept C126838900 @default.
- W4385694482 hasConcept C142724271 @default.
- W4385694482 hasConcept C153180895 @default.
- W4385694482 hasConcept C154945302 @default.
- W4385694482 hasConcept C2777714996 @default.
- W4385694482 hasConcept C2779134260 @default.
- W4385694482 hasConcept C3008058167 @default.
- W4385694482 hasConcept C36454342 @default.
- W4385694482 hasConcept C41008148 @default.
- W4385694482 hasConcept C50644808 @default.
- W4385694482 hasConcept C524204448 @default.
- W4385694482 hasConcept C71924100 @default.
- W4385694482 hasConcept C81363708 @default.
- W4385694482 hasConcept C89600930 @default.
- W4385694482 hasConceptScore W4385694482C108583219 @default.
- W4385694482 hasConceptScore W4385694482C119857082 @default.
- W4385694482 hasConceptScore W4385694482C126322002 @default.
- W4385694482 hasConceptScore W4385694482C126838900 @default.
- W4385694482 hasConceptScore W4385694482C142724271 @default.
- W4385694482 hasConceptScore W4385694482C153180895 @default.
- W4385694482 hasConceptScore W4385694482C154945302 @default.
- W4385694482 hasConceptScore W4385694482C2777714996 @default.
- W4385694482 hasConceptScore W4385694482C2779134260 @default.
- W4385694482 hasConceptScore W4385694482C3008058167 @default.
- W4385694482 hasConceptScore W4385694482C36454342 @default.
- W4385694482 hasConceptScore W4385694482C41008148 @default.
- W4385694482 hasConceptScore W4385694482C50644808 @default.
- W4385694482 hasConceptScore W4385694482C524204448 @default.
- W4385694482 hasConceptScore W4385694482C71924100 @default.
- W4385694482 hasConceptScore W4385694482C81363708 @default.
- W4385694482 hasConceptScore W4385694482C89600930 @default.
- W4385694482 hasLocation W43856944821 @default.
- W4385694482 hasOpenAccess W4385694482 @default.
- W4385694482 hasPrimaryLocation W43856944821 @default.
- W4385694482 hasRelatedWork W2731899572 @default.
- W4385694482 hasRelatedWork W2790662084 @default.
- W4385694482 hasRelatedWork W2999805992 @default.
- W4385694482 hasRelatedWork W3116150086 @default.
- W4385694482 hasRelatedWork W3133861977 @default.
- W4385694482 hasRelatedWork W4200173597 @default.
- W4385694482 hasRelatedWork W4291897433 @default.
- W4385694482 hasRelatedWork W4312417841 @default.
- W4385694482 hasRelatedWork W4321369474 @default.
- W4385694482 hasRelatedWork W4380075502 @default.
- W4385694482 isParatext "false" @default.
- W4385694482 isRetracted "false" @default.
- W4385694482 workType "article" @default.