Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385694504> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4385694504 abstract "We propose for the first time a new strategy to train slice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis. In particular, each of which is extracted through a convolutional neural network (CNN). This method is applicable to CT datasets with per-slice labels such as the RSNA Intracranial Hemorrhage (ICH) dataset, which aims to predict the presence of ICH and classify it into 5 different sub-types. We obtain a single model in the top 4% best-performing solutions of the RSNA ICH challenge, where model ensembles are allowed. Experiments also show that the proposed method significantly outperforms the baseline model on CQ500. The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging. To encourage new advances in the field, we will make our codes and pre-trained model available upon acceptance of the paper." @default.
- W4385694504 created "2023-08-10" @default.
- W4385694504 creator A5002468050 @default.
- W4385694504 creator A5041644424 @default.
- W4385694504 creator A5053018788 @default.
- W4385694504 creator A5060770511 @default.
- W4385694504 creator A5065112274 @default.
- W4385694504 creator A5074340406 @default.
- W4385694504 date "2023-07-02" @default.
- W4385694504 modified "2023-09-27" @default.
- W4385694504 title "Slice-level Detection of Intracranial Hemorrhage on CT Using Deep Descriptors of Adjacent Slices" @default.
- W4385694504 cites W2108598243 @default.
- W4385694504 cites W2165698076 @default.
- W4385694504 cites W2194775991 @default.
- W4385694504 cites W2751924564 @default.
- W4385694504 cites W2809254203 @default.
- W4385694504 cites W2888316531 @default.
- W4385694504 cites W2896817483 @default.
- W4385694504 cites W2963855133 @default.
- W4385694504 cites W2992308087 @default.
- W4385694504 cites W2993303538 @default.
- W4385694504 cites W3083622693 @default.
- W4385694504 cites W3122459568 @default.
- W4385694504 cites W3133631487 @default.
- W4385694504 cites W3203774985 @default.
- W4385694504 cites W3209258301 @default.
- W4385694504 cites W4225783321 @default.
- W4385694504 doi "https://doi.org/10.1109/ssp53291.2023.10207932" @default.
- W4385694504 hasPublicationYear "2023" @default.
- W4385694504 type Work @default.
- W4385694504 citedByCount "0" @default.
- W4385694504 crossrefType "proceedings-article" @default.
- W4385694504 hasAuthorship W4385694504A5002468050 @default.
- W4385694504 hasAuthorship W4385694504A5041644424 @default.
- W4385694504 hasAuthorship W4385694504A5053018788 @default.
- W4385694504 hasAuthorship W4385694504A5060770511 @default.
- W4385694504 hasAuthorship W4385694504A5065112274 @default.
- W4385694504 hasAuthorship W4385694504A5074340406 @default.
- W4385694504 hasBestOaLocation W43856945042 @default.
- W4385694504 hasConcept C108583219 @default.
- W4385694504 hasConcept C153180895 @default.
- W4385694504 hasConcept C154945302 @default.
- W4385694504 hasConcept C202444582 @default.
- W4385694504 hasConcept C33923547 @default.
- W4385694504 hasConcept C41008148 @default.
- W4385694504 hasConcept C81363708 @default.
- W4385694504 hasConcept C9652623 @default.
- W4385694504 hasConceptScore W4385694504C108583219 @default.
- W4385694504 hasConceptScore W4385694504C153180895 @default.
- W4385694504 hasConceptScore W4385694504C154945302 @default.
- W4385694504 hasConceptScore W4385694504C202444582 @default.
- W4385694504 hasConceptScore W4385694504C33923547 @default.
- W4385694504 hasConceptScore W4385694504C41008148 @default.
- W4385694504 hasConceptScore W4385694504C81363708 @default.
- W4385694504 hasConceptScore W4385694504C9652623 @default.
- W4385694504 hasLocation W43856945041 @default.
- W4385694504 hasLocation W43856945042 @default.
- W4385694504 hasOpenAccess W4385694504 @default.
- W4385694504 hasPrimaryLocation W43856945041 @default.
- W4385694504 hasRelatedWork W2731899572 @default.
- W4385694504 hasRelatedWork W2999805992 @default.
- W4385694504 hasRelatedWork W3011074480 @default.
- W4385694504 hasRelatedWork W3116150086 @default.
- W4385694504 hasRelatedWork W3133861977 @default.
- W4385694504 hasRelatedWork W3192840557 @default.
- W4385694504 hasRelatedWork W4200173597 @default.
- W4385694504 hasRelatedWork W4291897433 @default.
- W4385694504 hasRelatedWork W4312417841 @default.
- W4385694504 hasRelatedWork W4321369474 @default.
- W4385694504 isParatext "false" @default.
- W4385694504 isRetracted "false" @default.
- W4385694504 workType "article" @default.