Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385702017> ?p ?o ?g. }
- W4385702017 endingPage "2281" @default.
- W4385702017 startingPage "2242" @default.
- W4385702017 abstract "We formulate an effective numerical scheme that can readily, and accurately, calculate the dynamics of weakly interacting multi-pulse solutions of the quintic complex Ginzburg–Landau equation (QCGLE) in one space dimension. The scheme is based on a global center-manifold reduction where one considers the solution of the QCGLE as the composition of individual pulses plus a remainder function, which is orthogonal to the adjoint eigenfunctions of the linearized operator about a single pulse. This center-manifold projection overcomes the difficulties of other, more orthodox, numerical schemes, by yielding a fast-slow system describing “slow” ordinary differential equations for the locations and phases of the individual pulses, and a “fast” partial differential equation for the remainder function. With small parameter where is a constant and is the minimal pulse separation distance, we write the fast-slow system in terms of first-order and second-order correction terms only, a formulation which is solved more efficiently than the full system. This fast-slow system is integrated numerically using adaptive time-stepping. Results are presented here for two- and three-pulse interactions. For the two-pulse problem, cells of periodic behavior, separated by an infinite set of heteroclinic orbits, are shown to “split” under perturbation creating complex spiral behavior. For the case of three-pulse interaction a range of dynamics, including chaotic pulse interaction, is found. While results are presented for pulse interaction in the QCGLE, the numerical scheme can also be applied to a wider class of parabolic PDEs." @default.
- W4385702017 created "2023-08-10" @default.
- W4385702017 creator A5021887049 @default.
- W4385702017 creator A5043328272 @default.
- W4385702017 creator A5056096547 @default.
- W4385702017 creator A5059046726 @default.
- W4385702017 date "2023-08-09" @default.
- W4385702017 modified "2023-10-14" @default.
- W4385702017 title "The Dynamics of Interacting Multi-pulses in the One-dimensional Quintic Complex Ginzburg–Landau Equation" @default.
- W4385702017 cites W1496872380 @default.
- W4385702017 cites W1561892995 @default.
- W4385702017 cites W1976464094 @default.
- W4385702017 cites W1987873981 @default.
- W4385702017 cites W2019795760 @default.
- W4385702017 cites W2026952387 @default.
- W4385702017 cites W2048355637 @default.
- W4385702017 cites W2052505102 @default.
- W4385702017 cites W2053838996 @default.
- W4385702017 cites W2058467948 @default.
- W4385702017 cites W2058793580 @default.
- W4385702017 cites W2099317565 @default.
- W4385702017 cites W2113842862 @default.
- W4385702017 cites W2117438311 @default.
- W4385702017 cites W2117453669 @default.
- W4385702017 cites W2963935899 @default.
- W4385702017 cites W4231663510 @default.
- W4385702017 doi "https://doi.org/10.1137/22m1519195" @default.
- W4385702017 hasPublicationYear "2023" @default.
- W4385702017 type Work @default.
- W4385702017 citedByCount "0" @default.
- W4385702017 crossrefType "journal-article" @default.
- W4385702017 hasAuthorship W4385702017A5021887049 @default.
- W4385702017 hasAuthorship W4385702017A5043328272 @default.
- W4385702017 hasAuthorship W4385702017A5056096547 @default.
- W4385702017 hasAuthorship W4385702017A5059046726 @default.
- W4385702017 hasBestOaLocation W43857020172 @default.
- W4385702017 hasConcept C121332964 @default.
- W4385702017 hasConcept C124966035 @default.
- W4385702017 hasConcept C127413603 @default.
- W4385702017 hasConcept C128803854 @default.
- W4385702017 hasConcept C134306372 @default.
- W4385702017 hasConcept C158622935 @default.
- W4385702017 hasConcept C158693339 @default.
- W4385702017 hasConcept C165160513 @default.
- W4385702017 hasConcept C165801399 @default.
- W4385702017 hasConcept C172435161 @default.
- W4385702017 hasConcept C20483540 @default.
- W4385702017 hasConcept C2778671503 @default.
- W4385702017 hasConcept C2780167933 @default.
- W4385702017 hasConcept C2781349735 @default.
- W4385702017 hasConcept C33923547 @default.
- W4385702017 hasConcept C39613435 @default.
- W4385702017 hasConcept C51544822 @default.
- W4385702017 hasConcept C529865628 @default.
- W4385702017 hasConcept C62520636 @default.
- W4385702017 hasConcept C74774103 @default.
- W4385702017 hasConcept C78045399 @default.
- W4385702017 hasConcept C78519656 @default.
- W4385702017 hasConcept C93779851 @default.
- W4385702017 hasConcept C94375191 @default.
- W4385702017 hasConceptScore W4385702017C121332964 @default.
- W4385702017 hasConceptScore W4385702017C124966035 @default.
- W4385702017 hasConceptScore W4385702017C127413603 @default.
- W4385702017 hasConceptScore W4385702017C128803854 @default.
- W4385702017 hasConceptScore W4385702017C134306372 @default.
- W4385702017 hasConceptScore W4385702017C158622935 @default.
- W4385702017 hasConceptScore W4385702017C158693339 @default.
- W4385702017 hasConceptScore W4385702017C165160513 @default.
- W4385702017 hasConceptScore W4385702017C165801399 @default.
- W4385702017 hasConceptScore W4385702017C172435161 @default.
- W4385702017 hasConceptScore W4385702017C20483540 @default.
- W4385702017 hasConceptScore W4385702017C2778671503 @default.
- W4385702017 hasConceptScore W4385702017C2780167933 @default.
- W4385702017 hasConceptScore W4385702017C2781349735 @default.
- W4385702017 hasConceptScore W4385702017C33923547 @default.
- W4385702017 hasConceptScore W4385702017C39613435 @default.
- W4385702017 hasConceptScore W4385702017C51544822 @default.
- W4385702017 hasConceptScore W4385702017C529865628 @default.
- W4385702017 hasConceptScore W4385702017C62520636 @default.
- W4385702017 hasConceptScore W4385702017C74774103 @default.
- W4385702017 hasConceptScore W4385702017C78045399 @default.
- W4385702017 hasConceptScore W4385702017C78519656 @default.
- W4385702017 hasConceptScore W4385702017C93779851 @default.
- W4385702017 hasConceptScore W4385702017C94375191 @default.
- W4385702017 hasFunder F4320334627 @default.
- W4385702017 hasIssue "3" @default.
- W4385702017 hasLocation W43857020171 @default.
- W4385702017 hasLocation W43857020172 @default.
- W4385702017 hasOpenAccess W4385702017 @default.
- W4385702017 hasPrimaryLocation W43857020171 @default.
- W4385702017 hasRelatedWork W1980855435 @default.
- W4385702017 hasRelatedWork W2005255825 @default.
- W4385702017 hasRelatedWork W2020506589 @default.
- W4385702017 hasRelatedWork W2027451299 @default.
- W4385702017 hasRelatedWork W2034091978 @default.
- W4385702017 hasRelatedWork W2132996009 @default.
- W4385702017 hasRelatedWork W2163618991 @default.
- W4385702017 hasRelatedWork W2381793807 @default.