Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385703560> ?p ?o ?g. }
- W4385703560 endingPage "105106" @default.
- W4385703560 startingPage "105106" @default.
- W4385703560 abstract "Generalised Newtonian Fluid (GNF) models which assume that the viscosity of a non-Newtonian fluid can be modelled inelastically as a time-independent, i.e. instantaneous, scalar function of the rate of strain, are used frequently. Classical examples of such models include the power-law, Carreau and Cross models (plus many others). In general flows these models are simply a function of the magnitude of the strain rate tensor (the magnitude being related to the second principal invariant of this tensor). Here we review the various attempts that have been proposed in the literature that retain the central idea of rather simple “inelastic” non-Newtonian fluid models whilst attempting to move beyond the constraints of making such models a function of just the second invariant of the rate of strain tensor and potentially suitable for more general flows. One approach has been to make the model a function of both the second and third invariants such that different viscosity behaviour can be predicted in shear and extension. These models have been shown to be somewhat successful in predicting some well-known features of polymeric flows normally associated with elasticity/strong extensional viscosity effects. However, such models suffer from the fact that the third invariant of the strain rate tensor vanishes in two-dimensional planar flows (and thus planar extensional effects cannot be incorporated). The second approach is to make the model a function of both the second invariant of the rate of strain tensor and a kinematic measure of the local flow “type” such that extensional effects can be incorporated in all stretching flows (i.e. even those in 2D). However, the issue then arises as to how to accurately determine the flow type in a general flow in an objective and straightforward manner. We show that a number of proposed models in the literature are not objective, whilst also highlighting the difficulties associated with this approach and the successes once fully objective and general measures are used. Although these approaches have not (yet) found wide-spread adoption within the literature, the benefits and utility of such models in general engineering applications remains obvious. This short review thus concludes with an outlook of how such models could be taken further." @default.
- W4385703560 created "2023-08-10" @default.
- W4385703560 creator A5037966485 @default.
- W4385703560 date "2023-10-01" @default.
- W4385703560 modified "2023-10-14" @default.
- W4385703560 title "Inelastic and flow-type parameter models for non-Newtonian fluids" @default.
- W4385703560 cites W1593038187 @default.
- W4385703560 cites W1966661720 @default.
- W4385703560 cites W1974941707 @default.
- W4385703560 cites W1975967806 @default.
- W4385703560 cites W1976638764 @default.
- W4385703560 cites W1977116642 @default.
- W4385703560 cites W1979176272 @default.
- W4385703560 cites W1980252280 @default.
- W4385703560 cites W1981799239 @default.
- W4385703560 cites W1983427192 @default.
- W4385703560 cites W1988101455 @default.
- W4385703560 cites W1988870012 @default.
- W4385703560 cites W1995398789 @default.
- W4385703560 cites W1995947377 @default.
- W4385703560 cites W1996220685 @default.
- W4385703560 cites W1999277104 @default.
- W4385703560 cites W2002671332 @default.
- W4385703560 cites W2002720970 @default.
- W4385703560 cites W2006489742 @default.
- W4385703560 cites W2006879983 @default.
- W4385703560 cites W2007615477 @default.
- W4385703560 cites W2011268355 @default.
- W4385703560 cites W2011542383 @default.
- W4385703560 cites W2013130786 @default.
- W4385703560 cites W2013949196 @default.
- W4385703560 cites W2017257523 @default.
- W4385703560 cites W2018380531 @default.
- W4385703560 cites W2019704130 @default.
- W4385703560 cites W2020134542 @default.
- W4385703560 cites W2022034631 @default.
- W4385703560 cites W2023505242 @default.
- W4385703560 cites W2023992804 @default.
- W4385703560 cites W2024134051 @default.
- W4385703560 cites W2025533964 @default.
- W4385703560 cites W2026399780 @default.
- W4385703560 cites W2028507398 @default.
- W4385703560 cites W2031871403 @default.
- W4385703560 cites W2039661563 @default.
- W4385703560 cites W2040011656 @default.
- W4385703560 cites W2043694146 @default.
- W4385703560 cites W2046623714 @default.
- W4385703560 cites W2050727739 @default.
- W4385703560 cites W2055104966 @default.
- W4385703560 cites W2056343095 @default.
- W4385703560 cites W2056885674 @default.
- W4385703560 cites W2072447884 @default.
- W4385703560 cites W2072773415 @default.
- W4385703560 cites W2076710004 @default.
- W4385703560 cites W2080701122 @default.
- W4385703560 cites W2086095064 @default.
- W4385703560 cites W2086411992 @default.
- W4385703560 cites W2087360646 @default.
- W4385703560 cites W2090771862 @default.
- W4385703560 cites W2090795050 @default.
- W4385703560 cites W2093724093 @default.
- W4385703560 cites W2094066578 @default.
- W4385703560 cites W2101641492 @default.
- W4385703560 cites W2110222098 @default.
- W4385703560 cites W2110717364 @default.
- W4385703560 cites W2114116372 @default.
- W4385703560 cites W2116861531 @default.
- W4385703560 cites W2138712461 @default.
- W4385703560 cites W2141330842 @default.
- W4385703560 cites W2145713432 @default.
- W4385703560 cites W2158082510 @default.
- W4385703560 cites W2168533002 @default.
- W4385703560 cites W2171138625 @default.
- W4385703560 cites W2273540315 @default.
- W4385703560 cites W2317523433 @default.
- W4385703560 cites W2325740837 @default.
- W4385703560 cites W2333917601 @default.
- W4385703560 cites W2465615786 @default.
- W4385703560 cites W2520705773 @default.
- W4385703560 cites W2590388047 @default.
- W4385703560 cites W2916501278 @default.
- W4385703560 cites W2996080028 @default.
- W4385703560 cites W3010022233 @default.
- W4385703560 cites W3012125483 @default.
- W4385703560 cites W3045124517 @default.
- W4385703560 cites W3087670914 @default.
- W4385703560 cites W3102486845 @default.
- W4385703560 cites W3105876206 @default.
- W4385703560 cites W3130955618 @default.
- W4385703560 cites W3192802755 @default.
- W4385703560 cites W3201595140 @default.
- W4385703560 cites W4233443436 @default.
- W4385703560 cites W4312084349 @default.
- W4385703560 cites W4380787487 @default.
- W4385703560 cites W4385252584 @default.
- W4385703560 cites W4385257480 @default.
- W4385703560 doi "https://doi.org/10.1016/j.jnnfm.2023.105106" @default.
- W4385703560 hasPublicationYear "2023" @default.