Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385705024> ?p ?o ?g. }
- W4385705024 abstract "Slope stability prediction is an important task in geotechnical engineering which can be achieved through physics-based or data-driven approaches. Physics-based approaches rely on geotechnical knowledge from soil mechanics, such as limit equilibrium analysis and shear strength theories, to evaluate the stability condition of slopes, and they are often limited to slope-specific analysis. Data-driven approaches predict slope stability conditions based on learned relationships between influencing factors and slope stability conditions from past observations of slope failures (i.e., case histories); they rely on big data which are difficult to obtain. This study examines three easy-to-implement and effective methods to integrate geotechnical engineering domain knowledge into data-driven models for slope stability prediction: hybrid knowledge-data model, knowledge-based model initiation, and knowledge-guided loss function. These models were benchmarked against pure data-driven models and domain knowledge–based models, including a physics-based solution chart and a physics-based empirical model. A compilation of slope stability case histories from the literature was used as the benchmark database, and five-fold cross-validation was employed to evaluate model performance. The model validation results demonstrated that machine learning models outperformed domain knowledge–based models in terms of several evaluation metrics. The three proposed methods were found to outperform both domain knowledge–based models and pure data-driven models. Additionally, the hybrid knowledge-data models and knowledge-guided loss function were found to reduce discrepancies in the predicted slope stability conditions compared with reported factor-of-safety values, leading to a better alignment with the underlying physics related to slope stability. This study provides an initial assessment of the value of coupling domain knowledge and data-driven methods in geotechnical engineering applications using slope stability prediction as an example." @default.
- W4385705024 created "2023-08-10" @default.
- W4385705024 creator A5011424214 @default.
- W4385705024 creator A5067105881 @default.
- W4385705024 creator A5074805770 @default.
- W4385705024 date "2023-10-01" @default.
- W4385705024 modified "2023-09-23" @default.
- W4385705024 title "Applying Knowledge-Guided Machine Learning to Slope Stability Prediction" @default.
- W4385705024 cites W1732617692 @default.
- W4385705024 cites W1977411522 @default.
- W4385705024 cites W1977813873 @default.
- W4385705024 cites W1991184250 @default.
- W4385705024 cites W2002521620 @default.
- W4385705024 cites W2011792591 @default.
- W4385705024 cites W2012140778 @default.
- W4385705024 cites W2036996527 @default.
- W4385705024 cites W2042287401 @default.
- W4385705024 cites W2048170654 @default.
- W4385705024 cites W2048253989 @default.
- W4385705024 cites W2066588280 @default.
- W4385705024 cites W2067130442 @default.
- W4385705024 cites W2069527243 @default.
- W4385705024 cites W2088794999 @default.
- W4385705024 cites W2119969191 @default.
- W4385705024 cites W2131320212 @default.
- W4385705024 cites W2134008286 @default.
- W4385705024 cites W2139212933 @default.
- W4385705024 cites W2152120135 @default.
- W4385705024 cites W2153656222 @default.
- W4385705024 cites W2156909104 @default.
- W4385705024 cites W2161064703 @default.
- W4385705024 cites W2165698076 @default.
- W4385705024 cites W2166819294 @default.
- W4385705024 cites W2170493813 @default.
- W4385705024 cites W2170505850 @default.
- W4385705024 cites W2314735756 @default.
- W4385705024 cites W2346062110 @default.
- W4385705024 cites W2416094904 @default.
- W4385705024 cites W2734256217 @default.
- W4385705024 cites W2791551166 @default.
- W4385705024 cites W2808701867 @default.
- W4385705024 cites W2878701519 @default.
- W4385705024 cites W2887280559 @default.
- W4385705024 cites W2900620189 @default.
- W4385705024 cites W2911964244 @default.
- W4385705024 cites W2919115771 @default.
- W4385705024 cites W2950419939 @default.
- W4385705024 cites W2972075568 @default.
- W4385705024 cites W2980361537 @default.
- W4385705024 cites W2986457312 @default.
- W4385705024 cites W2999026783 @default.
- W4385705024 cites W3017305623 @default.
- W4385705024 cites W3088538572 @default.
- W4385705024 cites W3119005585 @default.
- W4385705024 cites W3140862400 @default.
- W4385705024 cites W3160258528 @default.
- W4385705024 cites W3184418626 @default.
- W4385705024 cites W3185585276 @default.
- W4385705024 cites W3207392840 @default.
- W4385705024 cites W3214123887 @default.
- W4385705024 cites W4206973221 @default.
- W4385705024 cites W4226171984 @default.
- W4385705024 cites W4239510810 @default.
- W4385705024 cites W4283319085 @default.
- W4385705024 cites W4296344227 @default.
- W4385705024 cites W429766147 @default.
- W4385705024 doi "https://doi.org/10.1061/jggefk.gteng-11053" @default.
- W4385705024 hasPublicationYear "2023" @default.
- W4385705024 type Work @default.
- W4385705024 citedByCount "0" @default.
- W4385705024 crossrefType "journal-article" @default.
- W4385705024 hasAuthorship W4385705024A5011424214 @default.
- W4385705024 hasAuthorship W4385705024A5067105881 @default.
- W4385705024 hasAuthorship W4385705024A5074805770 @default.
- W4385705024 hasConcept C110069353 @default.
- W4385705024 hasConcept C112972136 @default.
- W4385705024 hasConcept C119857082 @default.
- W4385705024 hasConcept C124101348 @default.
- W4385705024 hasConcept C127313418 @default.
- W4385705024 hasConcept C127413603 @default.
- W4385705024 hasConcept C13280743 @default.
- W4385705024 hasConcept C134306372 @default.
- W4385705024 hasConcept C14036430 @default.
- W4385705024 hasConcept C154945302 @default.
- W4385705024 hasConcept C185798385 @default.
- W4385705024 hasConcept C187320778 @default.
- W4385705024 hasConcept C201995342 @default.
- W4385705024 hasConcept C207685749 @default.
- W4385705024 hasConcept C2780451532 @default.
- W4385705024 hasConcept C33923547 @default.
- W4385705024 hasConcept C36503486 @default.
- W4385705024 hasConcept C41008148 @default.
- W4385705024 hasConcept C45804977 @default.
- W4385705024 hasConcept C78458016 @default.
- W4385705024 hasConcept C86803240 @default.
- W4385705024 hasConceptScore W4385705024C110069353 @default.
- W4385705024 hasConceptScore W4385705024C112972136 @default.
- W4385705024 hasConceptScore W4385705024C119857082 @default.
- W4385705024 hasConceptScore W4385705024C124101348 @default.
- W4385705024 hasConceptScore W4385705024C127313418 @default.