Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385705436> ?p ?o ?g. }
- W4385705436 endingPage "03002" @default.
- W4385705436 startingPage "03002" @default.
- W4385705436 abstract "Because of the accessibility of massive data from remote sensing data and developments in ML, machine learning (ML) techniques have been extensively applied in environmental remote sensing research. Modern machine learning (ML) frameworks like deep learning (DL) have significantly outperformed older models in terms of performance. This study focuses on the software that uses a traditional neural network (NN) as well as Deep Learning (DL) approaches in environmental remote sensing, which also covers land cover mapping, retrieval of environmental parameters, data fusion, image compression, and information reconstruction and prediction. It is also explained how DL may be used to monitor other aspects of the ecosystem, including the environment, water management, ground and air surface temperatures, transpiration, ultraviolet (UV) rays, and sea color all factors to consider. Following that, the essay explores the challenges and prospective uses of DL in environmental remote sensing." @default.
- W4385705436 created "2023-08-10" @default.
- W4385705436 creator A5035829078 @default.
- W4385705436 creator A5075192159 @default.
- W4385705436 date "2023-01-01" @default.
- W4385705436 modified "2023-09-23" @default.
- W4385705436 title "A Comparative Study of Deep Learning and Traditional Methods for Environmental Remote Sensing" @default.
- W4385705436 cites W1655403841 @default.
- W4385705436 cites W1849277567 @default.
- W4385705436 cites W1967408977 @default.
- W4385705436 cites W1978145340 @default.
- W4385705436 cites W1984792953 @default.
- W4385705436 cites W2026913026 @default.
- W4385705436 cites W2057532702 @default.
- W4385705436 cites W2090702492 @default.
- W4385705436 cites W2114794293 @default.
- W4385705436 cites W2119879130 @default.
- W4385705436 cites W2124706543 @default.
- W4385705436 cites W2147867287 @default.
- W4385705436 cites W2148736789 @default.
- W4385705436 cites W2150280378 @default.
- W4385705436 cites W2159162331 @default.
- W4385705436 cites W2163654989 @default.
- W4385705436 cites W2163922914 @default.
- W4385705436 cites W2172927205 @default.
- W4385705436 cites W2245000483 @default.
- W4385705436 cites W2412588858 @default.
- W4385705436 cites W2514340250 @default.
- W4385705436 cites W2527189750 @default.
- W4385705436 cites W2588561483 @default.
- W4385705436 cites W2590366910 @default.
- W4385705436 cites W2599868771 @default.
- W4385705436 cites W2620207452 @default.
- W4385705436 cites W2740144340 @default.
- W4385705436 cites W2772269064 @default.
- W4385705436 cites W2801586435 @default.
- W4385705436 cites W2802689996 @default.
- W4385705436 cites W2803946774 @default.
- W4385705436 cites W2805142011 @default.
- W4385705436 cites W2811300257 @default.
- W4385705436 cites W2889780520 @default.
- W4385705436 cites W2890443177 @default.
- W4385705436 cites W2896500956 @default.
- W4385705436 cites W2897656581 @default.
- W4385705436 cites W2919115771 @default.
- W4385705436 cites W2939734061 @default.
- W4385705436 cites W2940726923 @default.
- W4385705436 cites W2970351942 @default.
- W4385705436 cites W2976120863 @default.
- W4385705436 cites W2986339177 @default.
- W4385705436 cites W3005739096 @default.
- W4385705436 cites W3104341624 @default.
- W4385705436 cites W4248710273 @default.
- W4385705436 cites W65738273 @default.
- W4385705436 doi "https://doi.org/10.1051/itmconf/20235603002" @default.
- W4385705436 hasPublicationYear "2023" @default.
- W4385705436 type Work @default.
- W4385705436 citedByCount "0" @default.
- W4385705436 crossrefType "journal-article" @default.
- W4385705436 hasAuthorship W4385705436A5035829078 @default.
- W4385705436 hasAuthorship W4385705436A5075192159 @default.
- W4385705436 hasBestOaLocation W43857054361 @default.
- W4385705436 hasConcept C108583219 @default.
- W4385705436 hasConcept C119857082 @default.
- W4385705436 hasConcept C127413603 @default.
- W4385705436 hasConcept C147176958 @default.
- W4385705436 hasConcept C154945302 @default.
- W4385705436 hasConcept C205649164 @default.
- W4385705436 hasConcept C2522767166 @default.
- W4385705436 hasConcept C2780648208 @default.
- W4385705436 hasConcept C39432304 @default.
- W4385705436 hasConcept C41008148 @default.
- W4385705436 hasConcept C4792198 @default.
- W4385705436 hasConcept C50644808 @default.
- W4385705436 hasConcept C539469273 @default.
- W4385705436 hasConcept C62649853 @default.
- W4385705436 hasConcept C87717796 @default.
- W4385705436 hasConceptScore W4385705436C108583219 @default.
- W4385705436 hasConceptScore W4385705436C119857082 @default.
- W4385705436 hasConceptScore W4385705436C127413603 @default.
- W4385705436 hasConceptScore W4385705436C147176958 @default.
- W4385705436 hasConceptScore W4385705436C154945302 @default.
- W4385705436 hasConceptScore W4385705436C205649164 @default.
- W4385705436 hasConceptScore W4385705436C2522767166 @default.
- W4385705436 hasConceptScore W4385705436C2780648208 @default.
- W4385705436 hasConceptScore W4385705436C39432304 @default.
- W4385705436 hasConceptScore W4385705436C41008148 @default.
- W4385705436 hasConceptScore W4385705436C4792198 @default.
- W4385705436 hasConceptScore W4385705436C50644808 @default.
- W4385705436 hasConceptScore W4385705436C539469273 @default.
- W4385705436 hasConceptScore W4385705436C62649853 @default.
- W4385705436 hasConceptScore W4385705436C87717796 @default.
- W4385705436 hasLocation W43857054361 @default.
- W4385705436 hasOpenAccess W4385705436 @default.
- W4385705436 hasPrimaryLocation W43857054361 @default.
- W4385705436 hasRelatedWork W3014300295 @default.
- W4385705436 hasRelatedWork W3164822677 @default.
- W4385705436 hasRelatedWork W4223943233 @default.