Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385708051> ?p ?o ?g. }
- W4385708051 endingPage "23" @default.
- W4385708051 startingPage "1" @default.
- W4385708051 abstract "Transfer learning (TL) is an information reuse learning tool, which can help us learn better classification effect than traditional single task learning, because transfer learning can share information within the task-to-task model. Most TL algorithms are studied in the field of data improvement, doing some data extraction and transformation. However, it ignores that existing the additional information to improve the model’s accuracy, like Universum samples in the training data with privileged information. In this article, we focus on considering prior data to improve the TL algorithm, and the additional features also called privileged information are incorporated into the learning to improve the learning paradigm. In addition, we also carry out the Universum samples which do not belong to any indicated categories into the transfer learning paradigm to improve the utilization of prior knowledge. We propose a new TL Model (PU-TLSVM), in which each task with corresponding privileged features and Universum data is considered in the proposed model, so as to apply tasks with a priori data to the training stage. Then, we use Lagrange duality theorem to optimize our model to obtain the optimal discriminant for target task classification. Finally, we make a lot of predictions and tests to compare the actual effectiveness of the proposed method with the previous methods. The experiment results indicate that the proposed method is more effective and robust than other baselines." @default.
- W4385708051 created "2023-08-10" @default.
- W4385708051 creator A5006191181 @default.
- W4385708051 creator A5009705946 @default.
- W4385708051 creator A5011017270 @default.
- W4385708051 creator A5019061081 @default.
- W4385708051 creator A5028269829 @default.
- W4385708051 creator A5071868964 @default.
- W4385708051 creator A5073531557 @default.
- W4385708051 creator A5090815103 @default.
- W4385708051 date "2023-09-06" @default.
- W4385708051 modified "2023-09-30" @default.
- W4385708051 title "An Efficient Transfer Learning Method with Auxiliary Information" @default.
- W4385708051 cites W1530699444 @default.
- W4385708051 cites W1966026565 @default.
- W4385708051 cites W1990975153 @default.
- W4385708051 cites W1991078090 @default.
- W4385708051 cites W1997571094 @default.
- W4385708051 cites W1998894210 @default.
- W4385708051 cites W2004228030 @default.
- W4385708051 cites W2012739006 @default.
- W4385708051 cites W2016202900 @default.
- W4385708051 cites W2021687153 @default.
- W4385708051 cites W2030290736 @default.
- W4385708051 cites W2050398567 @default.
- W4385708051 cites W2050549724 @default.
- W4385708051 cites W2057597911 @default.
- W4385708051 cites W2062179223 @default.
- W4385708051 cites W2067562626 @default.
- W4385708051 cites W2069463124 @default.
- W4385708051 cites W2076300071 @default.
- W4385708051 cites W2096166399 @default.
- W4385708051 cites W2100664256 @default.
- W4385708051 cites W2100904656 @default.
- W4385708051 cites W2112483442 @default.
- W4385708051 cites W2122838776 @default.
- W4385708051 cites W2128276672 @default.
- W4385708051 cites W2131604898 @default.
- W4385708051 cites W2141116325 @default.
- W4385708051 cites W2158108973 @default.
- W4385708051 cites W2165698076 @default.
- W4385708051 cites W2286766689 @default.
- W4385708051 cites W2300633196 @default.
- W4385708051 cites W2552639984 @default.
- W4385708051 cites W2555440207 @default.
- W4385708051 cites W2592680600 @default.
- W4385708051 cites W2605639220 @default.
- W4385708051 cites W2610796455 @default.
- W4385708051 cites W2625401791 @default.
- W4385708051 cites W2766824859 @default.
- W4385708051 cites W2767603123 @default.
- W4385708051 cites W2788946103 @default.
- W4385708051 cites W2807936987 @default.
- W4385708051 cites W2921745897 @default.
- W4385708051 cites W2952126782 @default.
- W4385708051 cites W2966533837 @default.
- W4385708051 cites W2988231818 @default.
- W4385708051 cites W2997503619 @default.
- W4385708051 cites W2998219284 @default.
- W4385708051 cites W30445499 @default.
- W4385708051 cites W3103876096 @default.
- W4385708051 doi "https://doi.org/10.1145/3612930" @default.
- W4385708051 hasPublicationYear "2023" @default.
- W4385708051 type Work @default.
- W4385708051 citedByCount "0" @default.
- W4385708051 crossrefType "journal-article" @default.
- W4385708051 hasAuthorship W4385708051A5006191181 @default.
- W4385708051 hasAuthorship W4385708051A5009705946 @default.
- W4385708051 hasAuthorship W4385708051A5011017270 @default.
- W4385708051 hasAuthorship W4385708051A5019061081 @default.
- W4385708051 hasAuthorship W4385708051A5028269829 @default.
- W4385708051 hasAuthorship W4385708051A5071868964 @default.
- W4385708051 hasAuthorship W4385708051A5073531557 @default.
- W4385708051 hasAuthorship W4385708051A5090815103 @default.
- W4385708051 hasBestOaLocation W43857080511 @default.
- W4385708051 hasConcept C104317684 @default.
- W4385708051 hasConcept C111472728 @default.
- W4385708051 hasConcept C119857082 @default.
- W4385708051 hasConcept C124101348 @default.
- W4385708051 hasConcept C138885662 @default.
- W4385708051 hasConcept C150899416 @default.
- W4385708051 hasConcept C154945302 @default.
- W4385708051 hasConcept C162324750 @default.
- W4385708051 hasConcept C185592680 @default.
- W4385708051 hasConcept C187736073 @default.
- W4385708051 hasConcept C188888258 @default.
- W4385708051 hasConcept C19966478 @default.
- W4385708051 hasConcept C202444582 @default.
- W4385708051 hasConcept C204241405 @default.
- W4385708051 hasConcept C2780451532 @default.
- W4385708051 hasConcept C28006648 @default.
- W4385708051 hasConcept C33923547 @default.
- W4385708051 hasConcept C41008148 @default.
- W4385708051 hasConcept C55493867 @default.
- W4385708051 hasConcept C75553542 @default.
- W4385708051 hasConcept C77075516 @default.
- W4385708051 hasConcept C90509273 @default.
- W4385708051 hasConcept C9652623 @default.