Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385708209> ?p ?o ?g. }
- W4385708209 endingPage "709" @default.
- W4385708209 startingPage "692" @default.
- W4385708209 abstract "Deep learning methods outperform human capabilities in pattern recognition and data processing problems and now have an increasingly important role in scientific discovery. A key application of machine learning in molecular science is to learn potential energy surfaces or force fields from ab initio solutions of the electronic Schrödinger equation using data sets obtained with density functional theory, coupled cluster or other quantum chemistry (QC) methods. In this Review, we discuss a complementary approach using machine learning to aid the direct solution of QC problems from first principles. Specifically, we focus on quantum Monte Carlo methods that use neural-network ansatzes to solve the electronic Schrödinger equation, in first and second quantization, computing ground and excited states and generalizing over multiple nuclear configurations. Although still at their infancy, these methods can already generate virtually exact solutions of the electronic Schrödinger equation for small systems and rival advanced conventional QC methods for systems with up to a few dozen electrons. Quantum Monte Carlo methods using neutral-network ansatzes can provide virtually exact solutions to the electronic Schrödinger equations for small systems and are comparable to conventional quantum chemistry methods when investigating systems with dozens of electrons." @default.
- W4385708209 created "2023-08-10" @default.
- W4385708209 creator A5005400027 @default.
- W4385708209 creator A5007408828 @default.
- W4385708209 creator A5032285062 @default.
- W4385708209 creator A5046021591 @default.
- W4385708209 creator A5046513205 @default.
- W4385708209 creator A5055016850 @default.
- W4385708209 creator A5066348255 @default.
- W4385708209 creator A5079249244 @default.
- W4385708209 date "2023-08-09" @default.
- W4385708209 modified "2023-10-13" @default.
- W4385708209 title "Ab initio quantum chemistry with neural-network wavefunctions" @default.
- W4385708209 cites W1490154431 @default.
- W4385708209 cites W1498436455 @default.
- W4385708209 cites W1663839511 @default.
- W4385708209 cites W1965288006 @default.
- W4385708209 cites W1970789124 @default.
- W4385708209 cites W1971366228 @default.
- W4385708209 cites W1978469301 @default.
- W4385708209 cites W1980910639 @default.
- W4385708209 cites W1985701409 @default.
- W4385708209 cites W1995341919 @default.
- W4385708209 cites W2010785223 @default.
- W4385708209 cites W2018435387 @default.
- W4385708209 cites W2019599572 @default.
- W4385708209 cites W2021102405 @default.
- W4385708209 cites W2025444507 @default.
- W4385708209 cites W2027003240 @default.
- W4385708209 cites W2029413789 @default.
- W4385708209 cites W2033134911 @default.
- W4385708209 cites W2040870580 @default.
- W4385708209 cites W2041367235 @default.
- W4385708209 cites W2043996466 @default.
- W4385708209 cites W2057109974 @default.
- W4385708209 cites W2057987165 @default.
- W4385708209 cites W2066415671 @default.
- W4385708209 cites W2071027807 @default.
- W4385708209 cites W2072808339 @default.
- W4385708209 cites W2076063813 @default.
- W4385708209 cites W2079488937 @default.
- W4385708209 cites W2085765555 @default.
- W4385708209 cites W2098614082 @default.
- W4385708209 cites W2100495367 @default.
- W4385708209 cites W2104489082 @default.
- W4385708209 cites W2112796928 @default.
- W4385708209 cites W2113651538 @default.
- W4385708209 cites W2117539524 @default.
- W4385708209 cites W2137983211 @default.
- W4385708209 cites W2145339207 @default.
- W4385708209 cites W2166364272 @default.
- W4385708209 cites W2169554039 @default.
- W4385708209 cites W2240232167 @default.
- W4385708209 cites W2257979135 @default.
- W4385708209 cites W2292646695 @default.
- W4385708209 cites W2323175157 @default.
- W4385708209 cites W2419175238 @default.
- W4385708209 cites W2464791347 @default.
- W4385708209 cites W2527189750 @default.
- W4385708209 cites W2561704091 @default.
- W4385708209 cites W2592893046 @default.
- W4385708209 cites W2750458571 @default.
- W4385708209 cites W2755695124 @default.
- W4385708209 cites W2767428711 @default.
- W4385708209 cites W2778051509 @default.
- W4385708209 cites W2806843381 @default.
- W4385708209 cites W2845055700 @default.
- W4385708209 cites W2885190592 @default.
- W4385708209 cites W2885400989 @default.
- W4385708209 cites W2900686357 @default.
- W4385708209 cites W2902907165 @default.
- W4385708209 cites W2910857709 @default.
- W4385708209 cites W2919115771 @default.
- W4385708209 cites W2921586812 @default.
- W4385708209 cites W2923537029 @default.
- W4385708209 cites W2935584311 @default.
- W4385708209 cites W2949158470 @default.
- W4385708209 cites W2962925033 @default.
- W4385708209 cites W2962928554 @default.
- W4385708209 cites W2964452809 @default.
- W4385708209 cites W2972032089 @default.
- W4385708209 cites W2972246420 @default.
- W4385708209 cites W2974176966 @default.
- W4385708209 cites W2975697068 @default.
- W4385708209 cites W2984234582 @default.
- W4385708209 cites W2997959813 @default.
- W4385708209 cites W3009611342 @default.
- W4385708209 cites W3010488723 @default.
- W4385708209 cites W3016908833 @default.
- W4385708209 cites W3017300942 @default.
- W4385708209 cites W3024871466 @default.
- W4385708209 cites W3028529071 @default.
- W4385708209 cites W3035559885 @default.
- W4385708209 cites W3035785882 @default.
- W4385708209 cites W3045659006 @default.
- W4385708209 cites W3049675384 @default.
- W4385708209 cites W3085090411 @default.
- W4385708209 cites W3089428833 @default.