Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385714212> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4385714212 abstract "The main approaches for simulating FMCW radar are based on ray tracing, which is usually computationally intensive and do not account for background noise. This work proposes a faster method for FMCW radar simulation capable of generating synthetic raw radar data using generative adversarial networks (GAN). The code and pre-trained weights are open-source and available on GitHub. This method generates 16 simultaneous chirps, which allows the generated data to be used for the further development of algorithms for processing radar data (filtering and clustering). This can increase the potential for data augmentation, e.g., by generating data in non-existent or safety-critical scenarios that are not reproducible in real life. In this work, the GAN was trained with radar measurements of a motorcycle and used to generate synthetic raw radar data of a motorcycle traveling in a straight line. For generating this data, the distance of the motorcycle and Gaussian noise are used as input to the neural network. The synthetic generated radar chirps were evaluated using the Frechet Inception Distance (FID). Then, the Range-Azimuth (RA) map is calculated twice: first, based on synthetic data using this GAN and, second, based on real data. Based on these RA maps, an algorithm with adaptive threshold and edge detection is used for object detection. The results have shown that the data is realistic in terms of coherent radar reflections of the motorcycle and background noise based on the comparison of chirps, the RA maps and the object detection results. Thus, the proposed method in this work has shown to minimize the simulation-to-reality gap for the generation of radar data." @default.
- W4385714212 created "2023-08-10" @default.
- W4385714212 creator A5022391493 @default.
- W4385714212 creator A5037173569 @default.
- W4385714212 creator A5050390402 @default.
- W4385714212 creator A5060426722 @default.
- W4385714212 creator A5061438945 @default.
- W4385714212 creator A5073809193 @default.
- W4385714212 creator A5078954824 @default.
- W4385714212 creator A5080287013 @default.
- W4385714212 date "2023-08-04" @default.
- W4385714212 modified "2023-09-27" @default.
- W4385714212 title "Generation of Realistic Synthetic Raw Radar Data for Automated Driving Applications using Generative Adversarial Networks" @default.
- W4385714212 doi "https://doi.org/10.48550/arxiv.2308.02632" @default.
- W4385714212 hasPublicationYear "2023" @default.
- W4385714212 type Work @default.
- W4385714212 citedByCount "0" @default.
- W4385714212 crossrefType "posted-content" @default.
- W4385714212 hasAuthorship W4385714212A5022391493 @default.
- W4385714212 hasAuthorship W4385714212A5037173569 @default.
- W4385714212 hasAuthorship W4385714212A5050390402 @default.
- W4385714212 hasAuthorship W4385714212A5060426722 @default.
- W4385714212 hasAuthorship W4385714212A5061438945 @default.
- W4385714212 hasAuthorship W4385714212A5073809193 @default.
- W4385714212 hasAuthorship W4385714212A5078954824 @default.
- W4385714212 hasAuthorship W4385714212A5080287013 @default.
- W4385714212 hasBestOaLocation W43857142121 @default.
- W4385714212 hasConcept C10929652 @default.
- W4385714212 hasConcept C11413529 @default.
- W4385714212 hasConcept C115961682 @default.
- W4385714212 hasConcept C132964779 @default.
- W4385714212 hasConcept C154945302 @default.
- W4385714212 hasConcept C159737794 @default.
- W4385714212 hasConcept C160920958 @default.
- W4385714212 hasConcept C199360897 @default.
- W4385714212 hasConcept C2524010 @default.
- W4385714212 hasConcept C31972630 @default.
- W4385714212 hasConcept C33923547 @default.
- W4385714212 hasConcept C41008148 @default.
- W4385714212 hasConcept C554190296 @default.
- W4385714212 hasConcept C76155785 @default.
- W4385714212 hasConcept C99498987 @default.
- W4385714212 hasConceptScore W4385714212C10929652 @default.
- W4385714212 hasConceptScore W4385714212C11413529 @default.
- W4385714212 hasConceptScore W4385714212C115961682 @default.
- W4385714212 hasConceptScore W4385714212C132964779 @default.
- W4385714212 hasConceptScore W4385714212C154945302 @default.
- W4385714212 hasConceptScore W4385714212C159737794 @default.
- W4385714212 hasConceptScore W4385714212C160920958 @default.
- W4385714212 hasConceptScore W4385714212C199360897 @default.
- W4385714212 hasConceptScore W4385714212C2524010 @default.
- W4385714212 hasConceptScore W4385714212C31972630 @default.
- W4385714212 hasConceptScore W4385714212C33923547 @default.
- W4385714212 hasConceptScore W4385714212C41008148 @default.
- W4385714212 hasConceptScore W4385714212C554190296 @default.
- W4385714212 hasConceptScore W4385714212C76155785 @default.
- W4385714212 hasConceptScore W4385714212C99498987 @default.
- W4385714212 hasLocation W43857142121 @default.
- W4385714212 hasOpenAccess W4385714212 @default.
- W4385714212 hasPrimaryLocation W43857142121 @default.
- W4385714212 hasRelatedWork W1891287906 @default.
- W4385714212 hasRelatedWork W1969923398 @default.
- W4385714212 hasRelatedWork W2036807459 @default.
- W4385714212 hasRelatedWork W2081591359 @default.
- W4385714212 hasRelatedWork W2562035282 @default.
- W4385714212 hasRelatedWork W2772917594 @default.
- W4385714212 hasRelatedWork W2775347418 @default.
- W4385714212 hasRelatedWork W3131857712 @default.
- W4385714212 hasRelatedWork W4320006013 @default.
- W4385714212 hasRelatedWork W2123920948 @default.
- W4385714212 isParatext "false" @default.
- W4385714212 isRetracted "false" @default.
- W4385714212 workType "article" @default.