Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385718051> ?p ?o ?g. }
- W4385718051 abstract "Abstract This paper presents new efficient six image interpolation techniques that aim to obtain high resolution images from low resolution ones. The problem of dealing with image interpolation as an inverse problem was treated in wavelet domain through the first proposed approach. This approach estimates wavelet coefficients in high frequency sub-images using least squares algorithm. The approach reveals performance improvement in PSNR and MSE values compared to bilinear and least squares algorithm. A second approach based on using artificial neural network for modeling the maximum entropy interpolation algorithm was presented. Training the suggested network is achieved by adjusting its weights using learning algorithm to minimize the sum of squared error between target and actual output of output neurons. The proposed approach requires fewer computations than the conventional high-quality image interpolation methods with little reduction in PSNR compared to the maximum entropy algorithm. A third algorithm which combines new contourlet transform and edge-based interpolation algorithm was proposed to improve object boundaries regularity which could be achieved by treating each successive approximation of the high-resolution image as a noisy approximation, hence enforcing the contourlet coefficients to have a sparsity constraint. The proposed algorithm gives an improvement of 2 dB in PSNR compared to IIGR algorithm and achieves the best MSE and correlation coefficient. The fourth approach presents an efficient method to get HR images from the fusion of Magnetic resonance and computed tomography images by adopting least-squares strategy to iteratively obtain wavelet sub-bands of the target HR image. The proposed approach was found to achieve good results especially when the curvelet transform is used to merge the CT and MR images. The fifth approach presents neural modeling of the maximum entropy image interpolation algorithm based on both curvelet and wavelet fusion. Through this approach the fusion process is performed while edges with a curved nature are preserved. Results showed that applying curvelet transform in the fusion of CT and MR images is better than DWT fusion and that interpolating the fused image by neural modeling of maximum entropy image interpolation algorithm is superior to interpolating the original MR and CT images. The sixth approach presents a new image scale-up, super-resolution, approach based on image fusion principle. MR and CT images were scaled-up using sparse-representation modeling with dictionary learning algorithms of Yang et. al. and Michael et. al.. The images were fused by discrete wavelet and curvelet transforms, then scaled-up by the same algorithms. Simulation results showed that scaling-up the fused MR and CT images, either by wavelet or curvelet fusion techniques, gives higher PSNR values than scaling-up the MR and CT image separately." @default.
- W4385718051 created "2023-08-11" @default.
- W4385718051 creator A5044462494 @default.
- W4385718051 creator A5066293326 @default.
- W4385718051 creator A5068743856 @default.
- W4385718051 creator A5078235233 @default.
- W4385718051 creator A5080762590 @default.
- W4385718051 creator A5089197443 @default.
- W4385718051 date "2023-08-08" @default.
- W4385718051 modified "2023-09-27" @default.
- W4385718051 title "New Efficient Interpolation Techniques for Medical Images" @default.
- W4385718051 cites W1763453483 @default.
- W4385718051 cites W1965078394 @default.
- W4385718051 cites W1967656832 @default.
- W4385718051 cites W1986378210 @default.
- W4385718051 cites W1986629820 @default.
- W4385718051 cites W1989760871 @default.
- W4385718051 cites W1994877111 @default.
- W4385718051 cites W1997238646 @default.
- W4385718051 cites W2016860730 @default.
- W4385718051 cites W2038677069 @default.
- W4385718051 cites W2065628492 @default.
- W4385718051 cites W2096916265 @default.
- W4385718051 cites W2101192922 @default.
- W4385718051 cites W2105090634 @default.
- W4385718051 cites W2109453625 @default.
- W4385718051 cites W2111822998 @default.
- W4385718051 cites W2117614074 @default.
- W4385718051 cites W2122905512 @default.
- W4385718051 cites W2127324110 @default.
- W4385718051 cites W2129487345 @default.
- W4385718051 cites W2131745743 @default.
- W4385718051 cites W2138068359 @default.
- W4385718051 cites W2148907823 @default.
- W4385718051 cites W2152609903 @default.
- W4385718051 cites W2153608957 @default.
- W4385718051 cites W2156448784 @default.
- W4385718051 cites W2156825886 @default.
- W4385718051 cites W2157494358 @default.
- W4385718051 cites W2160547390 @default.
- W4385718051 cites W2170163526 @default.
- W4385718051 cites W2580751378 @default.
- W4385718051 doi "https://doi.org/10.21203/rs.3.rs-2869416/v1" @default.
- W4385718051 hasPublicationYear "2023" @default.
- W4385718051 type Work @default.
- W4385718051 citedByCount "0" @default.
- W4385718051 crossrefType "posted-content" @default.
- W4385718051 hasAuthorship W4385718051A5044462494 @default.
- W4385718051 hasAuthorship W4385718051A5066293326 @default.
- W4385718051 hasAuthorship W4385718051A5068743856 @default.
- W4385718051 hasAuthorship W4385718051A5078235233 @default.
- W4385718051 hasAuthorship W4385718051A5080762590 @default.
- W4385718051 hasAuthorship W4385718051A5089197443 @default.
- W4385718051 hasBestOaLocation W43857180511 @default.
- W4385718051 hasConcept C105795698 @default.
- W4385718051 hasConcept C11413529 @default.
- W4385718051 hasConcept C115961682 @default.
- W4385718051 hasConcept C119768884 @default.
- W4385718051 hasConcept C137800194 @default.
- W4385718051 hasConcept C139945424 @default.
- W4385718051 hasConcept C154579607 @default.
- W4385718051 hasConcept C154945302 @default.
- W4385718051 hasConcept C196216189 @default.
- W4385718051 hasConcept C20479862 @default.
- W4385718051 hasConcept C205203396 @default.
- W4385718051 hasConcept C27405340 @default.
- W4385718051 hasConcept C31447003 @default.
- W4385718051 hasConcept C31972630 @default.
- W4385718051 hasConcept C33923547 @default.
- W4385718051 hasConcept C41008148 @default.
- W4385718051 hasConcept C47432892 @default.
- W4385718051 hasConcept C49608258 @default.
- W4385718051 hasConcept C9417928 @default.
- W4385718051 hasConceptScore W4385718051C105795698 @default.
- W4385718051 hasConceptScore W4385718051C11413529 @default.
- W4385718051 hasConceptScore W4385718051C115961682 @default.
- W4385718051 hasConceptScore W4385718051C119768884 @default.
- W4385718051 hasConceptScore W4385718051C137800194 @default.
- W4385718051 hasConceptScore W4385718051C139945424 @default.
- W4385718051 hasConceptScore W4385718051C154579607 @default.
- W4385718051 hasConceptScore W4385718051C154945302 @default.
- W4385718051 hasConceptScore W4385718051C196216189 @default.
- W4385718051 hasConceptScore W4385718051C20479862 @default.
- W4385718051 hasConceptScore W4385718051C205203396 @default.
- W4385718051 hasConceptScore W4385718051C27405340 @default.
- W4385718051 hasConceptScore W4385718051C31447003 @default.
- W4385718051 hasConceptScore W4385718051C31972630 @default.
- W4385718051 hasConceptScore W4385718051C33923547 @default.
- W4385718051 hasConceptScore W4385718051C41008148 @default.
- W4385718051 hasConceptScore W4385718051C47432892 @default.
- W4385718051 hasConceptScore W4385718051C49608258 @default.
- W4385718051 hasConceptScore W4385718051C9417928 @default.
- W4385718051 hasLocation W43857180511 @default.
- W4385718051 hasOpenAccess W4385718051 @default.
- W4385718051 hasPrimaryLocation W43857180511 @default.
- W4385718051 hasRelatedWork W2129292412 @default.
- W4385718051 hasRelatedWork W2133222113 @default.
- W4385718051 hasRelatedWork W2165172345 @default.
- W4385718051 hasRelatedWork W2165589608 @default.
- W4385718051 hasRelatedWork W2355602298 @default.