Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385724056> ?p ?o ?g. }
- W4385724056 endingPage "12297" @default.
- W4385724056 startingPage "12290" @default.
- W4385724056 abstract "Measuring the isotopic composition of Hg in natural waters is challenging due to the ultratrace level of aqueous Hg (ng L-1). At least 5 ng of Hg mass is required for Hg isotopic analysis. Given the low Hg concentration in natural waters, a large volume of water (>10 L) is typically needed. The conventional grab sampling method is time-consuming, laborious, and prone to contamination during transportation and preconcentration steps. In this study, a DGT (diffusive gradients in thin films) method based on aminopropyl and mercaptopropyl bi-functionalized SBA-15 nanoparticles was developed and extended to determine the concentration and isotopic composition of aqueous Hg for the first time. The results of laboratory analysis showed that Hg adsorption by DGT induces ∼ -0.2‰ mass-dependent fractionation (MDF) and little mass-independent fractionation (MIF). The magnitude of MDF exhibits a dependence on the diffusion-layer thickness of DGT. Since Hg-MDF can occur in a broad range of environmental processes, monitoring the δ202Hg of aqueous Hg using the DGT method should be performed with caution. Field results show consistent MIF signatures (Δ199Hg) between the DGT and conventional grab sampling method. The developed DGT method serves as a passive sampling method that effectively characterizes the MIF of Hg in waters to understand the biogeochemical cycle of Hg at contaminated sites." @default.
- W4385724056 created "2023-08-11" @default.
- W4385724056 creator A5002780067 @default.
- W4385724056 creator A5034149786 @default.
- W4385724056 creator A5034747837 @default.
- W4385724056 creator A5035942463 @default.
- W4385724056 creator A5039266544 @default.
- W4385724056 creator A5043409394 @default.
- W4385724056 creator A5066485329 @default.
- W4385724056 creator A5071067099 @default.
- W4385724056 creator A5071192995 @default.
- W4385724056 date "2023-08-10" @default.
- W4385724056 modified "2023-10-15" @default.
- W4385724056 title "Determination of the Isotopic Composition of Aqueous Mercury in a Paddy Ecosystem Using Diffusive Gradients in Thin Films" @default.
- W4385724056 cites W1979966144 @default.
- W4385724056 cites W1983031743 @default.
- W4385724056 cites W1991420157 @default.
- W4385724056 cites W1995828327 @default.
- W4385724056 cites W1998701750 @default.
- W4385724056 cites W2013339751 @default.
- W4385724056 cites W2025310754 @default.
- W4385724056 cites W2028508821 @default.
- W4385724056 cites W2030416280 @default.
- W4385724056 cites W2040830308 @default.
- W4385724056 cites W2041847793 @default.
- W4385724056 cites W2042535091 @default.
- W4385724056 cites W2051041650 @default.
- W4385724056 cites W2057690974 @default.
- W4385724056 cites W2061097678 @default.
- W4385724056 cites W2070788616 @default.
- W4385724056 cites W2073911538 @default.
- W4385724056 cites W2074972294 @default.
- W4385724056 cites W2081004529 @default.
- W4385724056 cites W2083901813 @default.
- W4385724056 cites W2085665399 @default.
- W4385724056 cites W2088505330 @default.
- W4385724056 cites W2089547845 @default.
- W4385724056 cites W2094679168 @default.
- W4385724056 cites W2118691770 @default.
- W4385724056 cites W2144303743 @default.
- W4385724056 cites W2152349588 @default.
- W4385724056 cites W2265651863 @default.
- W4385724056 cites W2312626034 @default.
- W4385724056 cites W2327673562 @default.
- W4385724056 cites W2328661150 @default.
- W4385724056 cites W2343882781 @default.
- W4385724056 cites W2385597173 @default.
- W4385724056 cites W2496612396 @default.
- W4385724056 cites W2500710076 @default.
- W4385724056 cites W2510844513 @default.
- W4385724056 cites W2511275804 @default.
- W4385724056 cites W2526746217 @default.
- W4385724056 cites W2563744599 @default.
- W4385724056 cites W2760198886 @default.
- W4385724056 cites W2766182678 @default.
- W4385724056 cites W2771605855 @default.
- W4385724056 cites W2789467586 @default.
- W4385724056 cites W2795882712 @default.
- W4385724056 cites W2884448207 @default.
- W4385724056 cites W2898934772 @default.
- W4385724056 cites W2900559007 @default.
- W4385724056 cites W2903802616 @default.
- W4385724056 cites W2971377531 @default.
- W4385724056 cites W2974761568 @default.
- W4385724056 cites W3000519143 @default.
- W4385724056 cites W3008784434 @default.
- W4385724056 cites W3018373995 @default.
- W4385724056 cites W3047603303 @default.
- W4385724056 cites W3049680081 @default.
- W4385724056 cites W3084603111 @default.
- W4385724056 cites W3093012089 @default.
- W4385724056 cites W3096011476 @default.
- W4385724056 cites W3133589446 @default.
- W4385724056 cites W3201122542 @default.
- W4385724056 cites W3217501760 @default.
- W4385724056 cites W4220820441 @default.
- W4385724056 cites W4223908179 @default.
- W4385724056 cites W4225140912 @default.
- W4385724056 cites W4306726716 @default.
- W4385724056 doi "https://doi.org/10.1021/acs.analchem.3c01356" @default.
- W4385724056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37605798" @default.
- W4385724056 hasPublicationYear "2023" @default.
- W4385724056 type Work @default.
- W4385724056 citedByCount "0" @default.
- W4385724056 crossrefType "journal-article" @default.
- W4385724056 hasAuthorship W4385724056A5002780067 @default.
- W4385724056 hasAuthorship W4385724056A5034149786 @default.
- W4385724056 hasAuthorship W4385724056A5034747837 @default.
- W4385724056 hasAuthorship W4385724056A5035942463 @default.
- W4385724056 hasAuthorship W4385724056A5039266544 @default.
- W4385724056 hasAuthorship W4385724056A5043409394 @default.
- W4385724056 hasAuthorship W4385724056A5066485329 @default.
- W4385724056 hasAuthorship W4385724056A5071067099 @default.
- W4385724056 hasAuthorship W4385724056A5071192995 @default.
- W4385724056 hasConcept C107872376 @default.
- W4385724056 hasConcept C112570922 @default.
- W4385724056 hasConcept C113196181 @default.
- W4385724056 hasConcept C147789679 @default.