Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385725132> ?p ?o ?g. }
- W4385725132 endingPage "100558" @default.
- W4385725132 startingPage "100558" @default.
- W4385725132 abstract "Multiple-source single-cell datasets have accumulated quickly and need computational methods to integrate and decompose into meaningful components. Here, we present inClust (integrated clustering), a flexible deep generative framework that enables embedding auxiliary information, latent space vector arithmetic, and clustering. All functional parts are relatively modular, independent in implementation but interrelated at runtime, resulting in an all-in general framework that could work in supervised, semi-supervised, or unsupervised mode. We show that inClust is superior to most data integration methods in benchmark datasets. Then, we demonstrate the capability of inClust in the tasks of conditional out-of-distribution generation in supervised mode, label transfer in semi-supervised mode, and spatial domain identification in unsupervised mode. In these examples, inClust could accurately express the effect of each covariate, distinguish the query-specific cell types, or segment spatial domains. The results support that inClust is an excellent general framework for multiple-task harmonization and data decomposition." @default.
- W4385725132 created "2023-08-11" @default.
- W4385725132 creator A5000051451 @default.
- W4385725132 creator A5000711088 @default.
- W4385725132 creator A5015753751 @default.
- W4385725132 creator A5018125095 @default.
- W4385725132 creator A5023615287 @default.
- W4385725132 creator A5036523453 @default.
- W4385725132 creator A5037855408 @default.
- W4385725132 creator A5065286115 @default.
- W4385725132 date "2023-08-01" @default.
- W4385725132 modified "2023-09-30" @default.
- W4385725132 title "A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data" @default.
- W4385725132 cites W2471536144 @default.
- W4385725132 cites W2753908609 @default.
- W4385725132 cites W2774307122 @default.
- W4385725132 cites W2887326710 @default.
- W4385725132 cites W2901677030 @default.
- W4385725132 cites W2915848182 @default.
- W4385725132 cites W2930826460 @default.
- W4385725132 cites W2950891712 @default.
- W4385725132 cites W2951449549 @default.
- W4385725132 cites W2951506174 @default.
- W4385725132 cites W2965552103 @default.
- W4385725132 cites W2969093152 @default.
- W4385725132 cites W2972983657 @default.
- W4385725132 cites W2979911343 @default.
- W4385725132 cites W2984472267 @default.
- W4385725132 cites W3021272327 @default.
- W4385725132 cites W3024013192 @default.
- W4385725132 cites W3033415403 @default.
- W4385725132 cites W3088401235 @default.
- W4385725132 cites W3093858607 @default.
- W4385725132 cites W3108118546 @default.
- W4385725132 cites W3117464799 @default.
- W4385725132 cites W3121168830 @default.
- W4385725132 cites W3129866267 @default.
- W4385725132 cites W3164692211 @default.
- W4385725132 cites W3183323060 @default.
- W4385725132 cites W3196650609 @default.
- W4385725132 cites W4210587306 @default.
- W4385725132 cites W4213108508 @default.
- W4385725132 cites W4214673148 @default.
- W4385725132 cites W4225598893 @default.
- W4385725132 cites W4226027202 @default.
- W4385725132 cites W4282937885 @default.
- W4385725132 cites W4295717668 @default.
- W4385725132 cites W4298140233 @default.
- W4385725132 cites W4307407679 @default.
- W4385725132 cites W4322718355 @default.
- W4385725132 doi "https://doi.org/10.1016/j.crmeth.2023.100558" @default.
- W4385725132 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37671019" @default.
- W4385725132 hasPublicationYear "2023" @default.
- W4385725132 type Work @default.
- W4385725132 citedByCount "0" @default.
- W4385725132 crossrefType "journal-article" @default.
- W4385725132 hasAuthorship W4385725132A5000051451 @default.
- W4385725132 hasAuthorship W4385725132A5000711088 @default.
- W4385725132 hasAuthorship W4385725132A5015753751 @default.
- W4385725132 hasAuthorship W4385725132A5018125095 @default.
- W4385725132 hasAuthorship W4385725132A5023615287 @default.
- W4385725132 hasAuthorship W4385725132A5036523453 @default.
- W4385725132 hasAuthorship W4385725132A5037855408 @default.
- W4385725132 hasAuthorship W4385725132A5065286115 @default.
- W4385725132 hasBestOaLocation W43857251321 @default.
- W4385725132 hasConcept C101468663 @default.
- W4385725132 hasConcept C111919701 @default.
- W4385725132 hasConcept C119857082 @default.
- W4385725132 hasConcept C124101348 @default.
- W4385725132 hasConcept C153180895 @default.
- W4385725132 hasConcept C154945302 @default.
- W4385725132 hasConcept C41008148 @default.
- W4385725132 hasConcept C73555534 @default.
- W4385725132 hasConcept C95623464 @default.
- W4385725132 hasConceptScore W4385725132C101468663 @default.
- W4385725132 hasConceptScore W4385725132C111919701 @default.
- W4385725132 hasConceptScore W4385725132C119857082 @default.
- W4385725132 hasConceptScore W4385725132C124101348 @default.
- W4385725132 hasConceptScore W4385725132C153180895 @default.
- W4385725132 hasConceptScore W4385725132C154945302 @default.
- W4385725132 hasConceptScore W4385725132C41008148 @default.
- W4385725132 hasConceptScore W4385725132C73555534 @default.
- W4385725132 hasConceptScore W4385725132C95623464 @default.
- W4385725132 hasFunder F4320321001 @default.
- W4385725132 hasFunder F4320322919 @default.
- W4385725132 hasFunder F4320335777 @default.
- W4385725132 hasIssue "8" @default.
- W4385725132 hasLocation W43857251321 @default.
- W4385725132 hasLocation W43857251322 @default.
- W4385725132 hasOpenAccess W4385725132 @default.
- W4385725132 hasPrimaryLocation W43857251321 @default.
- W4385725132 hasRelatedWork W2167582322 @default.
- W4385725132 hasRelatedWork W2556319748 @default.
- W4385725132 hasRelatedWork W2563096758 @default.
- W4385725132 hasRelatedWork W2742991909 @default.
- W4385725132 hasRelatedWork W2961085424 @default.
- W4385725132 hasRelatedWork W2972035100 @default.
- W4385725132 hasRelatedWork W4306674287 @default.