Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385727861> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385727861 abstract "Abstract Background and objectives: Fluid balance in acute kidney injury (AKI) patients can have adverse consequences if it is too high or too low, so rational fluid management is needed according to the patient’s volume status. This study aimed to develop a prediction model that can effectively identify volume-responsive (VR) and volume-unresponsive (VU) AKI patients. Methods We selected AKI patients from the US-based critical care database (Medical Information Mart for Intensive Care, MIMIC-IV2.2) who had urine output <0.5 ml/kg/h in the first 6 h after ICU admission and fluid intake >5 l in the next 6 h. Patients who received diuretics and renal replacement therapy on day 1 were excluded. We developed three predictive models, based on either machine learning Gradient Boosting Machine (GBM), random forest or logistic regression, to predict urine output >0.65 ml/kg/h in the 18 h following the initial 6 h of oliguria assessment, we divided the whole sample into training and testing sets by a ratio of 3:1,after training and optimizing the model, ranked the importance of features and evaluated the stability and accuracy of the model. Main results We analyzed 6295 patients, of whom 1438 (22.8%) experienced volume responsiveness and exhibited increased urine output after receiving more than 5 liters of fluid. Urinary creatinine, blood urea nitrogen (BUN), blood glucose and age were identified as important predictive factors for volume responsiveness. The Random Forest model performed the best, followed by the GBM model.The machine learning GBM outperformed the traditional logistic regression model in distinguishing between the volume responsive (VR) and volume unresponsive (VU) groups (AU-ROC, 0.874; 95% CI, 0.867 to 0.874 vs. 0.789; 95% CI, 0.779 to 0.789, respectively). Conclusions The Random Forest and GBM model, compared to the traditional logistic regression model, demonstrated a better ability to differentiate patients who did not exhibit a response in urine output to fluid intake. This finding suggests that machine learning techniques have the potential to improve the development and validation of predictive models in critical care research. Based on the feature importance ranking, creatinine, bun, age, glucose, and bicarbonate were identified as highly important features in the model could predicted VR in AKI patients." @default.
- W4385727861 created "2023-08-11" @default.
- W4385727861 creator A5013242068 @default.
- W4385727861 creator A5014740061 @default.
- W4385727861 creator A5028074515 @default.
- W4385727861 creator A5072796155 @default.
- W4385727861 creator A5078522478 @default.
- W4385727861 date "2023-08-08" @default.
- W4385727861 modified "2023-09-27" @default.
- W4385727861 title "Machine learning-based prediction model for volume responsiveness in critically ill patients with oliguric acute kidney injury" @default.
- W4385727861 cites W1944614931 @default.
- W4385727861 cites W1993674033 @default.
- W4385727861 cites W2009346384 @default.
- W4385727861 cites W2044787274 @default.
- W4385727861 cites W2065737867 @default.
- W4385727861 cites W2078358850 @default.
- W4385727861 cites W2105284628 @default.
- W4385727861 cites W2106542431 @default.
- W4385727861 cites W2129261645 @default.
- W4385727861 cites W2133009641 @default.
- W4385727861 cites W2134638390 @default.
- W4385727861 cites W2135695572 @default.
- W4385727861 cites W2136709241 @default.
- W4385727861 cites W2145136986 @default.
- W4385727861 cites W2167940718 @default.
- W4385727861 cites W2169904470 @default.
- W4385727861 cites W2171406427 @default.
- W4385727861 cites W2275164196 @default.
- W4385727861 cites W3149736908 @default.
- W4385727861 cites W4211157472 @default.
- W4385727861 cites W4281772963 @default.
- W4385727861 doi "https://doi.org/10.21203/rs.3.rs-3209707/v1" @default.
- W4385727861 hasPublicationYear "2023" @default.
- W4385727861 type Work @default.
- W4385727861 citedByCount "0" @default.
- W4385727861 crossrefType "posted-content" @default.
- W4385727861 hasAuthorship W4385727861A5013242068 @default.
- W4385727861 hasAuthorship W4385727861A5014740061 @default.
- W4385727861 hasAuthorship W4385727861A5028074515 @default.
- W4385727861 hasAuthorship W4385727861A5072796155 @default.
- W4385727861 hasAuthorship W4385727861A5078522478 @default.
- W4385727861 hasBestOaLocation W43857278611 @default.
- W4385727861 hasConcept C119857082 @default.
- W4385727861 hasConcept C126322002 @default.
- W4385727861 hasConcept C135760203 @default.
- W4385727861 hasConcept C151956035 @default.
- W4385727861 hasConcept C159641895 @default.
- W4385727861 hasConcept C169258074 @default.
- W4385727861 hasConcept C177713679 @default.
- W4385727861 hasConcept C194828623 @default.
- W4385727861 hasConcept C2778176769 @default.
- W4385727861 hasConcept C2779541074 @default.
- W4385727861 hasConcept C2779744138 @default.
- W4385727861 hasConcept C2780026642 @default.
- W4385727861 hasConcept C2780306776 @default.
- W4385727861 hasConcept C2780472472 @default.
- W4385727861 hasConcept C2987404301 @default.
- W4385727861 hasConcept C3018737135 @default.
- W4385727861 hasConcept C41008148 @default.
- W4385727861 hasConcept C71924100 @default.
- W4385727861 hasConceptScore W4385727861C119857082 @default.
- W4385727861 hasConceptScore W4385727861C126322002 @default.
- W4385727861 hasConceptScore W4385727861C135760203 @default.
- W4385727861 hasConceptScore W4385727861C151956035 @default.
- W4385727861 hasConceptScore W4385727861C159641895 @default.
- W4385727861 hasConceptScore W4385727861C169258074 @default.
- W4385727861 hasConceptScore W4385727861C177713679 @default.
- W4385727861 hasConceptScore W4385727861C194828623 @default.
- W4385727861 hasConceptScore W4385727861C2778176769 @default.
- W4385727861 hasConceptScore W4385727861C2779541074 @default.
- W4385727861 hasConceptScore W4385727861C2779744138 @default.
- W4385727861 hasConceptScore W4385727861C2780026642 @default.
- W4385727861 hasConceptScore W4385727861C2780306776 @default.
- W4385727861 hasConceptScore W4385727861C2780472472 @default.
- W4385727861 hasConceptScore W4385727861C2987404301 @default.
- W4385727861 hasConceptScore W4385727861C3018737135 @default.
- W4385727861 hasConceptScore W4385727861C41008148 @default.
- W4385727861 hasConceptScore W4385727861C71924100 @default.
- W4385727861 hasLocation W43857278611 @default.
- W4385727861 hasOpenAccess W4385727861 @default.
- W4385727861 hasPrimaryLocation W43857278611 @default.
- W4385727861 hasRelatedWork W107728123 @default.
- W4385727861 hasRelatedWork W1963695946 @default.
- W4385727861 hasRelatedWork W2115896597 @default.
- W4385727861 hasRelatedWork W2355383717 @default.
- W4385727861 hasRelatedWork W2358464185 @default.
- W4385727861 hasRelatedWork W2386433706 @default.
- W4385727861 hasRelatedWork W2789239346 @default.
- W4385727861 hasRelatedWork W3024875389 @default.
- W4385727861 hasRelatedWork W3030154544 @default.
- W4385727861 hasRelatedWork W4250338973 @default.
- W4385727861 isParatext "false" @default.
- W4385727861 isRetracted "false" @default.
- W4385727861 workType "article" @default.