Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385737243> ?p ?o ?g. }
- W4385737243 endingPage "104926" @default.
- W4385737243 startingPage "104926" @default.
- W4385737243 abstract "In this research, a partial least squares (PLS)-based RF with hybrid feature subspace selection is proposed for regression problems. For the problem that average voting strategy of basic RF may decrease method accuracy, PLS is adopted to automatically assign a voting weight to each tree and aggregate the outputs of all trees. To improve feature subspace selection, stratified sampling and embedded feature selection are integrated. First, the variable importance (VI) of each input feature is obtained through embedded feature selection and the features are categorized into two disjointed sets according to VI. During the construction of the trees, stratified sampling is used for feature subspace selection. The effectiveness of PLS aggregation and hybrid feature selection is respectively validated on six regression datasets. The superiority of the proposed RF is demonstrated on historical operation datasets of two power plants through a comparison with five other models." @default.
- W4385737243 created "2023-08-11" @default.
- W4385737243 creator A5002661071 @default.
- W4385737243 creator A5027971609 @default.
- W4385737243 creator A5065852771 @default.
- W4385737243 date "2023-09-01" @default.
- W4385737243 modified "2023-09-27" @default.
- W4385737243 title "A PLS-based random forest for NOx emission measurement of power plant" @default.
- W4385737243 cites W1988378196 @default.
- W4385737243 cites W2005330159 @default.
- W4385737243 cites W2006881475 @default.
- W4385737243 cites W2032617530 @default.
- W4385737243 cites W2035954132 @default.
- W4385737243 cites W2035984084 @default.
- W4385737243 cites W2043175314 @default.
- W4385737243 cites W2095089989 @default.
- W4385737243 cites W2214263137 @default.
- W4385737243 cites W2301740238 @default.
- W4385737243 cites W2472100207 @default.
- W4385737243 cites W2496264785 @default.
- W4385737243 cites W2509008543 @default.
- W4385737243 cites W2514056866 @default.
- W4385737243 cites W2583878030 @default.
- W4385737243 cites W2598830764 @default.
- W4385737243 cites W2600292797 @default.
- W4385737243 cites W2604928999 @default.
- W4385737243 cites W2611814915 @default.
- W4385737243 cites W2612473079 @default.
- W4385737243 cites W2739179075 @default.
- W4385737243 cites W2767419625 @default.
- W4385737243 cites W2774489999 @default.
- W4385737243 cites W2793534717 @default.
- W4385737243 cites W2794045421 @default.
- W4385737243 cites W2794143714 @default.
- W4385737243 cites W2795609575 @default.
- W4385737243 cites W2800868039 @default.
- W4385737243 cites W2801749227 @default.
- W4385737243 cites W2884754187 @default.
- W4385737243 cites W2888463866 @default.
- W4385737243 cites W2911964244 @default.
- W4385737243 cites W3003980711 @default.
- W4385737243 cites W3099006712 @default.
- W4385737243 cites W3134286218 @default.
- W4385737243 cites W753187444 @default.
- W4385737243 doi "https://doi.org/10.1016/j.chemolab.2023.104926" @default.
- W4385737243 hasPublicationYear "2023" @default.
- W4385737243 type Work @default.
- W4385737243 citedByCount "0" @default.
- W4385737243 crossrefType "journal-article" @default.
- W4385737243 hasAuthorship W4385737243A5002661071 @default.
- W4385737243 hasAuthorship W4385737243A5027971609 @default.
- W4385737243 hasAuthorship W4385737243A5065852771 @default.
- W4385737243 hasConcept C105795698 @default.
- W4385737243 hasConcept C106131492 @default.
- W4385737243 hasConcept C119857082 @default.
- W4385737243 hasConcept C124101348 @default.
- W4385737243 hasConcept C138885662 @default.
- W4385737243 hasConcept C140779682 @default.
- W4385737243 hasConcept C148483581 @default.
- W4385737243 hasConcept C153180895 @default.
- W4385737243 hasConcept C154945302 @default.
- W4385737243 hasConcept C169258074 @default.
- W4385737243 hasConcept C22354355 @default.
- W4385737243 hasConcept C2776401178 @default.
- W4385737243 hasConcept C31972630 @default.
- W4385737243 hasConcept C32834561 @default.
- W4385737243 hasConcept C33923547 @default.
- W4385737243 hasConcept C41008148 @default.
- W4385737243 hasConcept C41895202 @default.
- W4385737243 hasConcept C49898467 @default.
- W4385737243 hasConcept C81917197 @default.
- W4385737243 hasConcept C83546350 @default.
- W4385737243 hasConceptScore W4385737243C105795698 @default.
- W4385737243 hasConceptScore W4385737243C106131492 @default.
- W4385737243 hasConceptScore W4385737243C119857082 @default.
- W4385737243 hasConceptScore W4385737243C124101348 @default.
- W4385737243 hasConceptScore W4385737243C138885662 @default.
- W4385737243 hasConceptScore W4385737243C140779682 @default.
- W4385737243 hasConceptScore W4385737243C148483581 @default.
- W4385737243 hasConceptScore W4385737243C153180895 @default.
- W4385737243 hasConceptScore W4385737243C154945302 @default.
- W4385737243 hasConceptScore W4385737243C169258074 @default.
- W4385737243 hasConceptScore W4385737243C22354355 @default.
- W4385737243 hasConceptScore W4385737243C2776401178 @default.
- W4385737243 hasConceptScore W4385737243C31972630 @default.
- W4385737243 hasConceptScore W4385737243C32834561 @default.
- W4385737243 hasConceptScore W4385737243C33923547 @default.
- W4385737243 hasConceptScore W4385737243C41008148 @default.
- W4385737243 hasConceptScore W4385737243C41895202 @default.
- W4385737243 hasConceptScore W4385737243C49898467 @default.
- W4385737243 hasConceptScore W4385737243C81917197 @default.
- W4385737243 hasConceptScore W4385737243C83546350 @default.
- W4385737243 hasLocation W43857372431 @default.
- W4385737243 hasOpenAccess W4385737243 @default.
- W4385737243 hasPrimaryLocation W43857372431 @default.
- W4385737243 hasRelatedWork W138434442 @default.
- W4385737243 hasRelatedWork W2065962751 @default.
- W4385737243 hasRelatedWork W2088812990 @default.