Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385751489> ?p ?o ?g. }
- W4385751489 abstract "In this study, we developed a radiomic signature for the classification of benign lipid-poor adenomas, which may potentially help clinicians limit the number of unnecessary investigations in clinical practice. Indeterminate adrenal lesions of benign and malignant nature may exhibit different values of key radiomics features.Patients who had available histopathology reports and a non-contrast-enhanced CT scan were included in the study. Radiomics feature extraction was done after the adrenal lesions were contoured. The primary feature selection and prediction performance scores were calculated using the least absolute shrinkage and selection operator (LASSO). To eliminate redundancy, the best-performing features were further examined using the Pearson correlation coefficient, and new predictive models were created.This investigation covered 50 lesions in 48 patients. After LASSO-based radiomics feature selection, the test dataset's 30 iterations of logistic regression models produced an average performance of 0.72. The model with the best performance, made up of 13 radiomics features, had an AUC of 0.99 in the training phase and 1.00 in the test phase. The number of features was lowered to 5 after performing Pearson's correlation to prevent overfitting. The final radiomic signature trained a number of machine learning classifiers, with an average AUC of 0.93.Including more radiomics features in the identification of adenomas may improve the accuracy of NECT and reduce the need for additional imaging procedures and clinical workup, according to this and other recent radiomics studies that have clear points of contact with current clinical practice.The study developed a radiomic signature using unenhanced CT scans for classifying lipid-poor adenomas, potentially reducing unnecessary investigations that scored a final accuracy of 93%.• Radiomics has potential for differentiating lipid-poor adenomas and avoiding unnecessary further investigations. • Quadratic mean, strength, maximum 3D diameter, volume density, and area density are promising predictors for adenomas. • Radiomics models reach high performance with average AUC of 0.95 in the training phase and 0.72 in the test phase." @default.
- W4385751489 created "2023-08-12" @default.
- W4385751489 creator A5006852712 @default.
- W4385751489 creator A5007023394 @default.
- W4385751489 creator A5034780565 @default.
- W4385751489 creator A5037183565 @default.
- W4385751489 creator A5043273845 @default.
- W4385751489 creator A5043454137 @default.
- W4385751489 creator A5057910692 @default.
- W4385751489 creator A5059047058 @default.
- W4385751489 creator A5065685798 @default.
- W4385751489 creator A5078089189 @default.
- W4385751489 date "2023-08-11" @default.
- W4385751489 modified "2023-10-17" @default.
- W4385751489 title "Radiomics in the characterization of lipid-poor adrenal adenomas at unenhanced CT: time to look beyond usual density metrics" @default.
- W4385751489 cites W1974205241 @default.
- W4385751489 cites W2018257960 @default.
- W4385751489 cites W2019090719 @default.
- W4385751489 cites W2099921296 @default.
- W4385751489 cites W2135967868 @default.
- W4385751489 cites W2171815806 @default.
- W4385751489 cites W2306792694 @default.
- W4385751489 cites W2338884372 @default.
- W4385751489 cites W2398056625 @default.
- W4385751489 cites W2469640494 @default.
- W4385751489 cites W2509707964 @default.
- W4385751489 cites W2587297900 @default.
- W4385751489 cites W2632518954 @default.
- W4385751489 cites W2753416097 @default.
- W4385751489 cites W2890655202 @default.
- W4385751489 cites W2919134963 @default.
- W4385751489 cites W2947855303 @default.
- W4385751489 cites W2998789541 @default.
- W4385751489 cites W3015863696 @default.
- W4385751489 cites W3019290918 @default.
- W4385751489 cites W3039914993 @default.
- W4385751489 cites W3048802680 @default.
- W4385751489 cites W3084068173 @default.
- W4385751489 cites W3084074159 @default.
- W4385751489 cites W3126619375 @default.
- W4385751489 cites W3204030525 @default.
- W4385751489 cites W4206446171 @default.
- W4385751489 cites W4212999693 @default.
- W4385751489 cites W4225132438 @default.
- W4385751489 cites W4291020157 @default.
- W4385751489 cites W4297036190 @default.
- W4385751489 doi "https://doi.org/10.1007/s00330-023-10090-8" @default.
- W4385751489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37566266" @default.
- W4385751489 hasPublicationYear "2023" @default.
- W4385751489 type Work @default.
- W4385751489 citedByCount "0" @default.
- W4385751489 crossrefType "journal-article" @default.
- W4385751489 hasAuthorship W4385751489A5006852712 @default.
- W4385751489 hasAuthorship W4385751489A5007023394 @default.
- W4385751489 hasAuthorship W4385751489A5034780565 @default.
- W4385751489 hasAuthorship W4385751489A5037183565 @default.
- W4385751489 hasAuthorship W4385751489A5043273845 @default.
- W4385751489 hasAuthorship W4385751489A5043454137 @default.
- W4385751489 hasAuthorship W4385751489A5057910692 @default.
- W4385751489 hasAuthorship W4385751489A5059047058 @default.
- W4385751489 hasAuthorship W4385751489A5065685798 @default.
- W4385751489 hasAuthorship W4385751489A5078089189 @default.
- W4385751489 hasBestOaLocation W43857514891 @default.
- W4385751489 hasConcept C118552586 @default.
- W4385751489 hasConcept C119857082 @default.
- W4385751489 hasConcept C126322002 @default.
- W4385751489 hasConcept C126838900 @default.
- W4385751489 hasConcept C136764020 @default.
- W4385751489 hasConcept C138885662 @default.
- W4385751489 hasConcept C148483581 @default.
- W4385751489 hasConcept C151956035 @default.
- W4385751489 hasConcept C154945302 @default.
- W4385751489 hasConcept C16568411 @default.
- W4385751489 hasConcept C2776401178 @default.
- W4385751489 hasConcept C2778559731 @default.
- W4385751489 hasConcept C2779889316 @default.
- W4385751489 hasConcept C37616216 @default.
- W4385751489 hasConcept C41008148 @default.
- W4385751489 hasConcept C41895202 @default.
- W4385751489 hasConcept C71924100 @default.
- W4385751489 hasConceptScore W4385751489C118552586 @default.
- W4385751489 hasConceptScore W4385751489C119857082 @default.
- W4385751489 hasConceptScore W4385751489C126322002 @default.
- W4385751489 hasConceptScore W4385751489C126838900 @default.
- W4385751489 hasConceptScore W4385751489C136764020 @default.
- W4385751489 hasConceptScore W4385751489C138885662 @default.
- W4385751489 hasConceptScore W4385751489C148483581 @default.
- W4385751489 hasConceptScore W4385751489C151956035 @default.
- W4385751489 hasConceptScore W4385751489C154945302 @default.
- W4385751489 hasConceptScore W4385751489C16568411 @default.
- W4385751489 hasConceptScore W4385751489C2776401178 @default.
- W4385751489 hasConceptScore W4385751489C2778559731 @default.
- W4385751489 hasConceptScore W4385751489C2779889316 @default.
- W4385751489 hasConceptScore W4385751489C37616216 @default.
- W4385751489 hasConceptScore W4385751489C41008148 @default.
- W4385751489 hasConceptScore W4385751489C41895202 @default.
- W4385751489 hasConceptScore W4385751489C71924100 @default.
- W4385751489 hasLocation W43857514891 @default.
- W4385751489 hasLocation W43857514892 @default.
- W4385751489 hasOpenAccess W4385751489 @default.