Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385751837> ?p ?o ?g. }
- W4385751837 endingPage "448" @default.
- W4385751837 startingPage "437" @default.
- W4385751837 abstract "Abstract Quantification of in vitro osteoclast cultures (e.g. cell number) often relies on manual counting methods. These approaches are labour intensive, time consuming and result in substantial inter- and intra-user variability. This study aimed to develop and validate an automated workflow to robustly quantify in vitro osteoclast cultures. Using ilastik, a machine learning-based image analysis software, images of tartrate resistant acid phosphatase-stained mouse osteoclasts cultured on dentine discs were used to train the ilastik-based algorithm. Assessment of algorithm training showed that osteoclast numbers strongly correlated between manual- and automatically quantified values ( r = 0.87). Osteoclasts were consistently faithfully segmented by the model when visually compared to the original reflective light images. The ability of this method to detect changes in osteoclast number in response to different treatments was validated using zoledronate, ticagrelor, and co-culture with MCF7 breast cancer cells. Manual and automated counting methods detected a 70% reduction ( p < 0.05) in osteoclast number, when cultured with 10 nM zoledronate and a dose-dependent decrease with 1–10 μM ticagrelor ( p < 0.05). Co-culture with MCF7 cells increased osteoclast number by ≥ 50% irrespective of quantification method. Overall, an automated image segmentation and analysis workflow, which consistently and sensitively identified in vitro osteoclasts, was developed. Advantages of this workflow are (1) significantly reduction in user variability of endpoint measurements (93%) and analysis time (80%); (2) detection of osteoclasts cultured on different substrates from different species; and (3) easy to use and freely available to use along with tutorial resources." @default.
- W4385751837 created "2023-08-12" @default.
- W4385751837 creator A5009655769 @default.
- W4385751837 creator A5025679809 @default.
- W4385751837 creator A5046788364 @default.
- W4385751837 creator A5059707369 @default.
- W4385751837 creator A5068705775 @default.
- W4385751837 creator A5074479024 @default.
- W4385751837 creator A5078508470 @default.
- W4385751837 creator A5081894609 @default.
- W4385751837 date "2023-08-11" @default.
- W4385751837 modified "2023-10-09" @default.
- W4385751837 title "A Machine Learning-Based Image Segmentation Method to Quantify In Vitro Osteoclast Culture Endpoints" @default.
- W4385751837 cites W147733431 @default.
- W4385751837 cites W1842557142 @default.
- W4385751837 cites W1848983008 @default.
- W4385751837 cites W1968741229 @default.
- W4385751837 cites W1991938395 @default.
- W4385751837 cites W1995512718 @default.
- W4385751837 cites W2001811698 @default.
- W4385751837 cites W2005576117 @default.
- W4385751837 cites W2017302703 @default.
- W4385751837 cites W2018073425 @default.
- W4385751837 cites W2019015062 @default.
- W4385751837 cites W2029670310 @default.
- W4385751837 cites W2037869021 @default.
- W4385751837 cites W2064467855 @default.
- W4385751837 cites W2065441398 @default.
- W4385751837 cites W2089654781 @default.
- W4385751837 cites W2099540110 @default.
- W4385751837 cites W2109027220 @default.
- W4385751837 cites W2124028283 @default.
- W4385751837 cites W2130549848 @default.
- W4385751837 cites W2130586404 @default.
- W4385751837 cites W2136439811 @default.
- W4385751837 cites W2137219016 @default.
- W4385751837 cites W2150086052 @default.
- W4385751837 cites W2160041854 @default.
- W4385751837 cites W2167279371 @default.
- W4385751837 cites W2277324572 @default.
- W4385751837 cites W2321395279 @default.
- W4385751837 cites W2474664840 @default.
- W4385751837 cites W2484084661 @default.
- W4385751837 cites W2601810315 @default.
- W4385751837 cites W2802643624 @default.
- W4385751837 cites W2900623855 @default.
- W4385751837 cites W2911964244 @default.
- W4385751837 cites W2946783264 @default.
- W4385751837 cites W2946901414 @default.
- W4385751837 cites W2950388912 @default.
- W4385751837 cites W2975634117 @default.
- W4385751837 cites W2997677635 @default.
- W4385751837 cites W3013200786 @default.
- W4385751837 cites W3105282616 @default.
- W4385751837 cites W3131328531 @default.
- W4385751837 cites W3164808622 @default.
- W4385751837 cites W4221048436 @default.
- W4385751837 cites W4283813294 @default.
- W4385751837 doi "https://doi.org/10.1007/s00223-023-01121-z" @default.
- W4385751837 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37566229" @default.
- W4385751837 hasPublicationYear "2023" @default.
- W4385751837 type Work @default.
- W4385751837 citedByCount "1" @default.
- W4385751837 countsByYear W43857518372023 @default.
- W4385751837 crossrefType "journal-article" @default.
- W4385751837 hasAuthorship W4385751837A5009655769 @default.
- W4385751837 hasAuthorship W4385751837A5025679809 @default.
- W4385751837 hasAuthorship W4385751837A5046788364 @default.
- W4385751837 hasAuthorship W4385751837A5059707369 @default.
- W4385751837 hasAuthorship W4385751837A5068705775 @default.
- W4385751837 hasAuthorship W4385751837A5074479024 @default.
- W4385751837 hasAuthorship W4385751837A5078508470 @default.
- W4385751837 hasAuthorship W4385751837A5081894609 @default.
- W4385751837 hasBestOaLocation W43857518371 @default.
- W4385751837 hasConcept C136229726 @default.
- W4385751837 hasConcept C154945302 @default.
- W4385751837 hasConcept C177212765 @default.
- W4385751837 hasConcept C185592680 @default.
- W4385751837 hasConcept C202751555 @default.
- W4385751837 hasConcept C2776033226 @default.
- W4385751837 hasConcept C41008148 @default.
- W4385751837 hasConcept C55493867 @default.
- W4385751837 hasConcept C71924100 @default.
- W4385751837 hasConcept C77088390 @default.
- W4385751837 hasConcept C89600930 @default.
- W4385751837 hasConceptScore W4385751837C136229726 @default.
- W4385751837 hasConceptScore W4385751837C154945302 @default.
- W4385751837 hasConceptScore W4385751837C177212765 @default.
- W4385751837 hasConceptScore W4385751837C185592680 @default.
- W4385751837 hasConceptScore W4385751837C202751555 @default.
- W4385751837 hasConceptScore W4385751837C2776033226 @default.
- W4385751837 hasConceptScore W4385751837C41008148 @default.
- W4385751837 hasConceptScore W4385751837C55493867 @default.
- W4385751837 hasConceptScore W4385751837C71924100 @default.
- W4385751837 hasConceptScore W4385751837C77088390 @default.
- W4385751837 hasConceptScore W4385751837C89600930 @default.
- W4385751837 hasFunder F4320334629 @default.
- W4385751837 hasIssue "4" @default.