Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385753626> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4385753626 abstract "Among Women, Breast cancer is one of the maximum occurring diseases. Many women die every year because of breast cancer globally. Early prediction and diagnosis of this disease can prevent death in the end. The survival rate increases on detecting breast cancer early as better treatment can be provided. Development in prediction and diagnosis is necessary for the life of people. A higher amount of accuracy in the prediction of breast cancer is necessary for the treatment aspects and also for the survivability of patients. It is apparent that there are different techniques available in breast cancer detection but machine learning algorithms can bring a large contribution to the process of prediction and early diagnosis of breast cancer. In this study, we use a Wisconsin dataset which was collected from a scientific dataset of 569 breast cancer. Out of 569 patients, 63% were diagnosed with benign and 37% were diagnosed with malignant cancer. The benign tumor grows slowly and does not spread. We apply five machine learning algorithms to this dataset and train a model for predicting malignant and benign tissues (BCs). Algorithms are K-Nearest neighbor, Support vector machine, Decision tree, Deep learning, and Random-forest respectively. The effectiveness of these algorithms is evaluated in terms of accuracy, F measure, confusion matrix, and specificity. By comparing the results deep learning classifier gives the highest accuracy and outclass all the other classifiers by attaining an accuracy of 9S.l3%. SVM gives an accuracy of 97.66% whereas KNN gives an accuracy of 95.79% etc." @default.
- W4385753626 created "2023-08-12" @default.
- W4385753626 creator A5006286787 @default.
- W4385753626 creator A5017042486 @default.
- W4385753626 creator A5052740141 @default.
- W4385753626 creator A5077049186 @default.
- W4385753626 creator A5083688481 @default.
- W4385753626 date "2023-03-08" @default.
- W4385753626 modified "2023-10-05" @default.
- W4385753626 title "An Applied Artificial Intelligence Aided Technique for Effective Classification of Breast Cancer" @default.
- W4385753626 cites W2071529495 @default.
- W4385753626 cites W2786970530 @default.
- W4385753626 cites W2822752092 @default.
- W4385753626 cites W2913176145 @default.
- W4385753626 cites W2952523812 @default.
- W4385753626 cites W2969863169 @default.
- W4385753626 cites W3008381189 @default.
- W4385753626 cites W3023211159 @default.
- W4385753626 cites W3027808152 @default.
- W4385753626 cites W3038558128 @default.
- W4385753626 cites W3121453273 @default.
- W4385753626 cites W3130418141 @default.
- W4385753626 cites W3163373333 @default.
- W4385753626 cites W3183511035 @default.
- W4385753626 cites W3197078391 @default.
- W4385753626 cites W3201666041 @default.
- W4385753626 cites W4200472276 @default.
- W4385753626 cites W4211222971 @default.
- W4385753626 cites W4225722227 @default.
- W4385753626 doi "https://doi.org/10.1109/icepecc57281.2023.10209518" @default.
- W4385753626 hasPublicationYear "2023" @default.
- W4385753626 type Work @default.
- W4385753626 citedByCount "0" @default.
- W4385753626 crossrefType "proceedings-article" @default.
- W4385753626 hasAuthorship W4385753626A5006286787 @default.
- W4385753626 hasAuthorship W4385753626A5017042486 @default.
- W4385753626 hasAuthorship W4385753626A5052740141 @default.
- W4385753626 hasAuthorship W4385753626A5077049186 @default.
- W4385753626 hasAuthorship W4385753626A5083688481 @default.
- W4385753626 hasConcept C110083411 @default.
- W4385753626 hasConcept C119857082 @default.
- W4385753626 hasConcept C121608353 @default.
- W4385753626 hasConcept C12267149 @default.
- W4385753626 hasConcept C126322002 @default.
- W4385753626 hasConcept C138602881 @default.
- W4385753626 hasConcept C154945302 @default.
- W4385753626 hasConcept C169258074 @default.
- W4385753626 hasConcept C41008148 @default.
- W4385753626 hasConcept C530470458 @default.
- W4385753626 hasConcept C71924100 @default.
- W4385753626 hasConcept C84525736 @default.
- W4385753626 hasConcept C95623464 @default.
- W4385753626 hasConceptScore W4385753626C110083411 @default.
- W4385753626 hasConceptScore W4385753626C119857082 @default.
- W4385753626 hasConceptScore W4385753626C121608353 @default.
- W4385753626 hasConceptScore W4385753626C12267149 @default.
- W4385753626 hasConceptScore W4385753626C126322002 @default.
- W4385753626 hasConceptScore W4385753626C138602881 @default.
- W4385753626 hasConceptScore W4385753626C154945302 @default.
- W4385753626 hasConceptScore W4385753626C169258074 @default.
- W4385753626 hasConceptScore W4385753626C41008148 @default.
- W4385753626 hasConceptScore W4385753626C530470458 @default.
- W4385753626 hasConceptScore W4385753626C71924100 @default.
- W4385753626 hasConceptScore W4385753626C84525736 @default.
- W4385753626 hasConceptScore W4385753626C95623464 @default.
- W4385753626 hasLocation W43857536261 @default.
- W4385753626 hasOpenAccess W4385753626 @default.
- W4385753626 hasPrimaryLocation W43857536261 @default.
- W4385753626 hasRelatedWork W2889302474 @default.
- W4385753626 hasRelatedWork W3160713586 @default.
- W4385753626 hasRelatedWork W3201472348 @default.
- W4385753626 hasRelatedWork W4205685985 @default.
- W4385753626 hasRelatedWork W4313289487 @default.
- W4385753626 hasRelatedWork W4317732970 @default.
- W4385753626 hasRelatedWork W4321636153 @default.
- W4385753626 hasRelatedWork W4323294312 @default.
- W4385753626 hasRelatedWork W4366990902 @default.
- W4385753626 hasRelatedWork W3128021027 @default.
- W4385753626 isParatext "false" @default.
- W4385753626 isRetracted "false" @default.
- W4385753626 workType "article" @default.