Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385756475> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4385756475 endingPage "1" @default.
- W4385756475 startingPage "1" @default.
- W4385756475 abstract "The widespread use of the Internet of Things (IoT) necessitates large-scale communication among smart IoT devices (IoDs) across a wide geographical area. However, due to limited radio range and scalability issues of traditional wireless sensor networks, wide-area communication among IoDs is not feasible. As a solution, Low-Power Wide-Area Network (LPWAN) is emerging as one of the techniques that can provide long-range communication with minimal power consumption. Nevertheless, the direct data transmission approach will no longer be viable due to its short network lifetime. As such, multi-hop data routing strategies for LPWANs are proposed in the literature. However, multi-hop data transmission has several challenges, including increased data latency, energy imbalance, poor bandwidth utilization, and low data throughput. To address these challenges, we propose a novel method that uses machine learning technique for an energy-efficient and Quality-of-Service (QoS)-aware data transfer based on a recent breakthrough in social networks known as Small-World Characteristics (SWC). The network having SWC (i.e., low average path length and high average clustering coefficient) uses long-range links to reduce the number of intermediate hops for data transmission. In particular, a Q-learning framework is utilized for introducing optimal long-range links between the selected IoDs, resulting in the development of a Small-World LPWAN (SW-LPWAN). Furthermore, performance of the proposed method is computed in terms of energy-efficiency and QoS. Moreover, the results are compared with existing data routing techniques such as Low-Energy Adaptive Clustering Hierarchy (LEACH), modified LEACH, conventional multi-hop, and direct data transmission. Specifically, the proposed method maintains 29% more alive nodes, 18% higher residual energy, and 22% higher data throughput compared to the second best performing method. As such, the obtained experimental results validate that the proposed method outperforms other existing methods in the context of energy consumption and QoS." @default.
- W4385756475 created "2023-08-12" @default.
- W4385756475 creator A5014288820 @default.
- W4385756475 creator A5043524421 @default.
- W4385756475 creator A5047538161 @default.
- W4385756475 creator A5067182182 @default.
- W4385756475 creator A5070345834 @default.
- W4385756475 creator A5092797444 @default.
- W4385756475 creator A5092797445 @default.
- W4385756475 date "2023-01-01" @default.
- W4385756475 modified "2023-09-27" @default.
- W4385756475 title "Energy-Efficient and QoS-Aware Data Transfer in Q-Learning-Based Small-World LPWANs" @default.
- W4385756475 doi "https://doi.org/10.1109/jiot.2023.3304337" @default.
- W4385756475 hasPublicationYear "2023" @default.
- W4385756475 type Work @default.
- W4385756475 citedByCount "0" @default.
- W4385756475 crossrefType "journal-article" @default.
- W4385756475 hasAuthorship W4385756475A5014288820 @default.
- W4385756475 hasAuthorship W4385756475A5043524421 @default.
- W4385756475 hasAuthorship W4385756475A5047538161 @default.
- W4385756475 hasAuthorship W4385756475A5067182182 @default.
- W4385756475 hasAuthorship W4385756475A5070345834 @default.
- W4385756475 hasAuthorship W4385756475A5092797444 @default.
- W4385756475 hasAuthorship W4385756475A5092797445 @default.
- W4385756475 hasConcept C119857082 @default.
- W4385756475 hasConcept C120314980 @default.
- W4385756475 hasConcept C18903297 @default.
- W4385756475 hasConcept C24590314 @default.
- W4385756475 hasConcept C2776238582 @default.
- W4385756475 hasConcept C2776445043 @default.
- W4385756475 hasConcept C2780165032 @default.
- W4385756475 hasConcept C31258907 @default.
- W4385756475 hasConcept C41008148 @default.
- W4385756475 hasConcept C48044578 @default.
- W4385756475 hasConcept C5119721 @default.
- W4385756475 hasConcept C557945733 @default.
- W4385756475 hasConcept C73555534 @default.
- W4385756475 hasConcept C77088390 @default.
- W4385756475 hasConcept C86803240 @default.
- W4385756475 hasConceptScore W4385756475C119857082 @default.
- W4385756475 hasConceptScore W4385756475C120314980 @default.
- W4385756475 hasConceptScore W4385756475C18903297 @default.
- W4385756475 hasConceptScore W4385756475C24590314 @default.
- W4385756475 hasConceptScore W4385756475C2776238582 @default.
- W4385756475 hasConceptScore W4385756475C2776445043 @default.
- W4385756475 hasConceptScore W4385756475C2780165032 @default.
- W4385756475 hasConceptScore W4385756475C31258907 @default.
- W4385756475 hasConceptScore W4385756475C41008148 @default.
- W4385756475 hasConceptScore W4385756475C48044578 @default.
- W4385756475 hasConceptScore W4385756475C5119721 @default.
- W4385756475 hasConceptScore W4385756475C557945733 @default.
- W4385756475 hasConceptScore W4385756475C73555534 @default.
- W4385756475 hasConceptScore W4385756475C77088390 @default.
- W4385756475 hasConceptScore W4385756475C86803240 @default.
- W4385756475 hasLocation W43857564751 @default.
- W4385756475 hasOpenAccess W4385756475 @default.
- W4385756475 hasPrimaryLocation W43857564751 @default.
- W4385756475 hasRelatedWork W1537044748 @default.
- W4385756475 hasRelatedWork W1550168124 @default.
- W4385756475 hasRelatedWork W2364921833 @default.
- W4385756475 hasRelatedWork W2380023786 @default.
- W4385756475 hasRelatedWork W2385146268 @default.
- W4385756475 hasRelatedWork W2523449796 @default.
- W4385756475 hasRelatedWork W2546696010 @default.
- W4385756475 hasRelatedWork W26229282 @default.
- W4385756475 hasRelatedWork W2807056155 @default.
- W4385756475 hasRelatedWork W3119417306 @default.
- W4385756475 isParatext "false" @default.
- W4385756475 isRetracted "false" @default.
- W4385756475 workType "article" @default.