Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385756501> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4385756501 endingPage "20" @default.
- W4385756501 startingPage "1" @default.
- W4385756501 abstract "Data-to-text Generation (D2T) aims to generate textual natural language statements that can fluently and precisely describe the structured data such as graphs, tables, and meaning representations (MRs) in the form of key-value pairs. It is a typical and crucial task in natural language generation (NLG). Early D2T systems generated texts with the cost of human engineering in designing domain specific rules and templates, and achieved acceptable performance in coherence, fluency, and fidelity. In recent years, the data-driven D2T systems based on deep learning have reached state-of-the-art (SOTA) performance in more challenging datasets. In this paper, we provide a comprehensive review on existing neural data-to-text generation approaches. We first introduce available D2T resources, including systematically categorized D2T datasets and mainstream evaluation metrics. Next, we survey existing works based on the taxonomy along two axes: neural end-to-end D2T and neural modular D2T. We also discuss the potential applications and the adverse impacts. Finally, we present readers with the challenges faced by neural D2T and outline some potential future directions in this area." @default.
- W4385756501 created "2023-08-12" @default.
- W4385756501 creator A5005820786 @default.
- W4385756501 creator A5021629323 @default.
- W4385756501 creator A5053557669 @default.
- W4385756501 creator A5082058955 @default.
- W4385756501 date "2023-01-01" @default.
- W4385756501 modified "2023-09-27" @default.
- W4385756501 title "A Survey on Neural Data-to-Text Generation" @default.
- W4385756501 doi "https://doi.org/10.1109/tkde.2023.3304385" @default.
- W4385756501 hasPublicationYear "2023" @default.
- W4385756501 type Work @default.
- W4385756501 citedByCount "0" @default.
- W4385756501 crossrefType "journal-article" @default.
- W4385756501 hasAuthorship W4385756501A5005820786 @default.
- W4385756501 hasAuthorship W4385756501A5021629323 @default.
- W4385756501 hasAuthorship W4385756501A5053557669 @default.
- W4385756501 hasAuthorship W4385756501A5082058955 @default.
- W4385756501 hasConcept C101468663 @default.
- W4385756501 hasConcept C108583219 @default.
- W4385756501 hasConcept C111919701 @default.
- W4385756501 hasConcept C119857082 @default.
- W4385756501 hasConcept C138885662 @default.
- W4385756501 hasConcept C154945302 @default.
- W4385756501 hasConcept C195324797 @default.
- W4385756501 hasConcept C204321447 @default.
- W4385756501 hasConcept C2522767166 @default.
- W4385756501 hasConcept C2776187449 @default.
- W4385756501 hasConcept C2776459999 @default.
- W4385756501 hasConcept C2777413886 @default.
- W4385756501 hasConcept C2779439875 @default.
- W4385756501 hasConcept C2985684807 @default.
- W4385756501 hasConcept C41008148 @default.
- W4385756501 hasConcept C41895202 @default.
- W4385756501 hasConcept C50644808 @default.
- W4385756501 hasConcept C76155785 @default.
- W4385756501 hasConceptScore W4385756501C101468663 @default.
- W4385756501 hasConceptScore W4385756501C108583219 @default.
- W4385756501 hasConceptScore W4385756501C111919701 @default.
- W4385756501 hasConceptScore W4385756501C119857082 @default.
- W4385756501 hasConceptScore W4385756501C138885662 @default.
- W4385756501 hasConceptScore W4385756501C154945302 @default.
- W4385756501 hasConceptScore W4385756501C195324797 @default.
- W4385756501 hasConceptScore W4385756501C204321447 @default.
- W4385756501 hasConceptScore W4385756501C2522767166 @default.
- W4385756501 hasConceptScore W4385756501C2776187449 @default.
- W4385756501 hasConceptScore W4385756501C2776459999 @default.
- W4385756501 hasConceptScore W4385756501C2777413886 @default.
- W4385756501 hasConceptScore W4385756501C2779439875 @default.
- W4385756501 hasConceptScore W4385756501C2985684807 @default.
- W4385756501 hasConceptScore W4385756501C41008148 @default.
- W4385756501 hasConceptScore W4385756501C41895202 @default.
- W4385756501 hasConceptScore W4385756501C50644808 @default.
- W4385756501 hasConceptScore W4385756501C76155785 @default.
- W4385756501 hasLocation W43857565011 @default.
- W4385756501 hasOpenAccess W4385756501 @default.
- W4385756501 hasPrimaryLocation W43857565011 @default.
- W4385756501 hasRelatedWork W138710363 @default.
- W4385756501 hasRelatedWork W1599620240 @default.
- W4385756501 hasRelatedWork W2122804826 @default.
- W4385756501 hasRelatedWork W2153769858 @default.
- W4385756501 hasRelatedWork W2169546346 @default.
- W4385756501 hasRelatedWork W2587329402 @default.
- W4385756501 hasRelatedWork W2977842567 @default.
- W4385756501 hasRelatedWork W2995913583 @default.
- W4385756501 hasRelatedWork W3130493457 @default.
- W4385756501 hasRelatedWork W3160324151 @default.
- W4385756501 isParatext "false" @default.
- W4385756501 isRetracted "false" @default.
- W4385756501 workType "article" @default.